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polyethylene terephthalate (PET), polypropylene 
(PP), polyvinyl chloride (PVC), polystyrene (PS), and 
polyurethane (PUR) by microorganisms is either slow 
or under investigation as to whether it occurs at all 
in different environmental niches (e.g., soil, aquatic 
systems). There is an urgent need to complement the 
existing knowledge on the biodegradation and bio-
transformation of synthetic plastics to enable effec-
tive bioremediation strategies to mitigate the effects 
of environmental plastic contamination. Therefore, 
the aim of this review is to highlight current funda-
mental and applied research regarding the most prom-
ising biodegradation processes for synthetic plastics, 
the synthesis and applications of the most effective 
plastic-degrading enzymes, successful biotechnologi-
cal strategies to improve degradation, such as enzyme 
engineering and novel reactor designs, and plastic 
waste bioconversion into value-added products. In 
addition, this review is intended to depict indications 
for techno-economic analyses toward the valorization 
of plastic biodegradation processes and the environ-
mental impacts of synthetic plastic biodegradation. 
Combining strategies, such as enzymatic plastic deg-
radation followed by microbial biotransformation 
with the broad array of available pretreatment meth-
ods and abiotic factors, can contribute, under confined 
conditions, to the end-of-life utilization of plastics, 
consequently leading to more efficient biorecycling 
processes, and hence, to a circular plastic economy.

Abstract  Plastic pollution is a global concern due 
to the long half-life and high resistance of many syn-
thetic plastics to natural biodegradation. Therefore, 
great effort is required to avoid littering. However, 
the challenge of managing the ever-increasing quan-
tities of plastic waste is daunting. The biodegrada-
tion of synthetic plastics, such as polyethylene (PE), 
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Abbreviations 
BHET	� Bis(2-hydroxyethyl) terephthalate
CALB	� Candida antarctica lipase B
Cu	� Cupper
EG	� Ethylene glycol
H2O2	� Hydrogen peroxide
LCA	� Life-cycle analysis
LCB	� Lignocellulosic biomass
LCC	� Leaf-branch compost cutinase
LiPs	� Lignin peroxidases
MHET	� Mono(2-hydroxyethyl) terephtalate
MnPs	� Manganese peroxidases
MSP	� Minimum selling price
PCA	� Protocatechuate
PEF	� Polyethylene furanoate
PLA	� Polylactic acid
PE	� Polyethylene
PET	� Polyethylene terephthalate
PP	� Polypropylene
PS	� Polystyrene
PU	� Polyurethane
PTT	� Polytrimethylene terephthalate
PVC	� Polyvinyl chloride
SS	� Sodium sulfate
TEA	� Techno-economic analysis
TPA	� Terephthalic acid
TPPB	� Two-phase partitioning bioreactor

1  Introduction

Petrochemical plastics have reached an annual esti-
mated production of 359 million tons, and that pro-
duction over the last 70  years has reached approxi-
mately 8.3 billion tons (Kaushal et  al. 2021). Upon 
analyzing these numbers, the management of plastic 
waste easily becomes unsustainable. Furthermore, 
it is well known that most petroleum-based plastics 
persist in the environment for long periods due to 
their intrinsic properties, including high resistance to 
microbial degradation (Hopewell et al. 2009; Tokiwa 
et al. 2009; Amobonye et al. 2021; Zhu et al. 2022).

Saturated polyolefins have a broad range of appli-
cations since the versatility of these polymers arises 

from their cheap petrochemical feedstock origin and 
efficient catalytic polymerization process, with poly-
ethylene (PE) and polypropylene (PP) being two 
of the most widely used linear hydrocarbon poly-
mers (Yeung et  al. 2021). The recalcitrance of C–C 
backbone plastics to biodegradation is due to their 
extremely stable covalent C–C and C–H bonds as 
well as the absence of reactive functional groups 
(Fig.  1). In addition, the high molecular weight and 
hydrophobic nature of C–C polymers hinder biologi-
cal degradation since extracellular enzymes capable 
of oxidizing and depolymerizing long carbon chains 
are required to break down the polymer (Yang et al. 
2014). Multiple microorganisms have been found to 
degrade PE, especially when the plastic polymer is 
pretreated before being exposed to biological deg-
radation (Restrepo-Flórez et  al. 2014; Cowan et  al. 
2022). The microbial degradation of PP has not been 
well investigated, and only a few reports describe the 
degradation of pretreated PP films by soil consortia, 
bacterial communities, and fungal species (Alariqi 
et  al. 2006; Arkatkar et  al. 2009; Auta et  al. 2018). 
Polystyrene (PS) and polyvinyl chloride (PVC) plas-
tics also have C–C bonds in their structure, with PVC 
being considered one of the most durable synthetic 
polymers together with PP (Chen et al. 2020). Despite 
the widespread use of these polymers, there are only 
a few reports on their effective biodegradability (Wei 
et al. 2020).

The other group of synthetic polymers, which are 
categorized as heteroatomic backbone plastics (Wei 
and Zimmermann 2017), has been observed to be 
more susceptible to biodegradation processes. This 
group includes polyethylene terephthalate (PET) 
and polyurethane (PUR) polymers, which contain 
hydrolyzable ester and urethane bonds, respectively 
(Mohanan et al. 2020). PET is the most common type 
of aromatic polyester; it is widely used as a packag-
ing material and in bottles and fibers. As a sustainable 
recycling alternative for waste PET materials, micro-
bial polyester hydrolases from fungi and bacteria have 
already been evaluated for their potential to help solve 
the challenge of PET waste management. In nature, 
cutin is an abundant polyester found in plant cuticles. 
Interestingly, many polyester hydrolases with activity 
against PET are related to cutin-hydrolyzing ester-
ases, the so-called cutinases (Wei et  al. 2014; Zhu 
et al. 2022). The biodegradation of polyester PUR has 
been demonstrated primarily by soil fungi, but unlike 
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in PET, the responsible enzymes that contribute to 
PUR decomposition remain elusive and under inves-
tigation (Liu et al. 2021).

The literature is extensive regarding the degra-
dation of plastics, primarily because of the envi-
ronmental impact they generate and their projected 
future lacking feasible and sustainable solutions. A 
comprehensive overview of the bacterial degrada-
tion of synthetic polymers was recently published, 
indicating that important research must include (i) 
Further screening for microorganisms and biodeg-
radation pathways as well as (ii) Standardizing the 
corresponding studies and methodologies (Matjašič 
et al. 2021). Kaushal et al. (2021) summarized recent 
advances in the enzymatic degradation of the most 
frequent plastic materials to be attacked by hydrolases 
and suggested focusing on approaches that enhance 
these activities. The biodegradation of microplas-
tics by different microorganisms and their respective 
enzymes has been extensively described (Arpia et al. 
2021; Othman et al. 2021). Detailed compilations of 
studies on the biodegradation of conventional plas-
tics and/or bioplastics by bacteria, fungi, and larvae 
are also available (Mohanan et al. 2020; Maity et al. 

2021). Several studies have focused on integrative 
degradation processes, proposing the use of synthetic 
biology (Jaiswal et al. 2020) and the microbial valori-
zation of waste plastics for the biosynthesis of high-
value chemicals (Ru et al. 2020). Lastly, a very recent 
review of biotechnological and molecular advance-
ments in plastic biodegradation provides a compre-
hensive assessment and future perspectives, includ-
ing synthetic biology and computational approaches 
(Priya et al. 2021).

However, for most petroleum-based plastics, lit-
tle is known about the metabolic pathways, or the 
mechanisms and enzymes involved. In addition, there 
are contradictory views on the biodegradation of C–C 
bonds since it is claimed that the energy required to 
break C–C bonds is too high for enzymes to over-
come. Recently, by using protein engineering, it was 
possible to obtain a PET hydrolase with significant 
improvements in the PET degradation rate (Tournier 
et al. 2020), which would make it possible to develop 
an industrial biodegradation process for PET. In this 
way, it has been shown that optimization tools, both 
molecular and process-related, are of great impor-
tance for the biodegradation of polymeric materials.

Fig. 1   A Chemical structure of synthetic plastics and pro-
posed polymer chain cleavage due to abiotic factors. B Cata-
lytic reaction of the most common extracellular enzymes 

capable of altering the chemical and physical properties of 
polymers (bio-deterioration) or polymer breakdown (bio-frag-
mentation)
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This review emphasizes the most promising 
enzymes, microorganisms, and host systems, pro-
viding auspicious results with regard to the degra-
dation of synthetic plastics and the main strategies 
that enable effective biodegradation processes.

The first part of the review presents relevant 
studies that are organized according to the chemical 
structure of the polymers and the potential enzymes 
capable of attacking these structures. Biotechnolog-
ical advances have led to the continuous improve-
ment of plastic biodegradation processes. Thus, 
the second part of this review focuses on the most 
promising strategies with high application potential 
in the fields of enzyme engineering, process optimi-
zation, and reactor design as discussed in the con-
text of subsequent upcycling routes (Fig.  2). The 
last part of the review focuses on techno-economic 
aspects of the valorization of plastic biodegradation 
processes and the environmental implications for 
the enzymatic degradation of synthetic plastics. All 
these considerations provide the current framework 
for selecting suitable microorganisms and enzymes 
for the efficient biodegradation of the different 
petroleum-based plastic polymers and provide an 

overview of up-to-date approaches to tackling the 
plastic problem with cost-effective solutions.

2 � Enzymatic degradation of synthetic plastics

2.1 � Insights into the enzymatic cleavage of polymers

The use of living organisms in catalyzing solid sub-
strates is usually a major challenge, resulting in low 
degradation yields (Andler et al. 2018; Andler 2020). 
Currently, both bacteria and fungi are host systems 
for producing enzymes such as laccases, peroxidases, 
cutinases, and esterases. A major limitation in using 
enzymes for plastic degradation on an industrial scale 
is the stability of the enzymes under various condi-
tions, such as high temperatures and extreme pH con-
ditions (Gomes et al. 2013; Al-Tammar et al. 2016). 
For this reason, many investigators have searched dif-
ferent microorganisms for efficient enzymes to dem-
onstrate their use in industrial applications (Chen 
et  al. 2013; Tournier et  al. 2020; Saravanan et  al. 
2021).

Here, we present the enzymes with the most prom-
ising results in the field of plastic degradation. For a 

Fig. 2   Schematic overview 
of the microbial degradation 
of synthetic plastics and 
upcycling towards value-
added products. Light grey 
arrows indicate the main 
routes of synthetic plastics; 
thin dark grey arrows repre-
sent the multiple upcycling 
routes towards value-added 
products
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better understanding, the studies are organized into 
two groups according to the nature of the bonds that 
link the monomers together. The first group includes 
plastics with a C–C backbone, such as PE, PP, PS, 
and PVC, while the second group corresponds to 
plastics with a heteroatomic backbone, such as PUR 
and PET (Fig. 1). In Table 1, different studies show-
ing enzymes that effectively degrade synthetic plas-
tics, including hydrolases, laccases, and peroxidases, 
are summarized.

2.1.1 � Enzymatic degradation of plastics with a C–C 
backbone

The biodegradation of plastics with C–C bonds in 
their structure is poor, primarily due to the lack of 
hydrolyzable functional groups. This issue represents 
one of the biggest challenges in the absence of phys-
icochemical pretreatment processes (Restrepo-Flórez 
et al. 2014). Since enzymes that degrade natural poly-
mers with C–C bonds exist in nature, it has been pro-
posed that these enzymes are prime candidates for the 
biodegradation of polyolefins (Chen et al. 2020). This 
is the case for lignin-degrading enzymes, the second 
most abundant natural polymer (after cellulose) in 
nature. The main enzymes reported to have the abil-
ity to break down this group of polymers are laccases 
and peroxidases.

Laccases (benzenediol:oxygen oxidoreductase; 
p-diphenol oxidase EC 1.10.3.2) are multicopper oxi-
dase enzymes that were described for the first time in 
Japanese or Chinese lacquers (Rhus sp.) by Yoshida 
in 1883 (Madzak et  al. 2005; Sumathi et  al. 2016). 
These enzymes are widely found in nature and can 
catalyze the oxidation of various substrates, includ-
ing phenolic compounds, non-phenolic substrates, 
and environmental pollutants, by transferring elec-
trons from organic substrates to molecular oxygen 
(Fig. 1). In nature, a wide variety of microorganisms 
produce laccases, such as filamentous fungi, some 
plants, bacteria, and a few insects (Janusz et al. 2020). 
The functions described for laccases depend on the 
organism. In plants, laccases act in the degradation of 
lignin (Alessandra et al. 2010). Fungal laccases play a 
role in fungal plant pathogen/host interactions, mor-
phogenesis, and stress defense (Moreno et  al. 2020; 
Janusz et  al. 2020). Bacterial laccases can confer 
resistance to UV radiation and oxidation, in addi-
tion to participating in sporulation and pigmentation 

processes (Alessandra et al. 2010; Janusz et al. 2020). 
The great interest in studying laccases is due to their 
widespread use in many biotechnological processes, 
from textile bleaching to pharmaceuticals and the 
bioremediation of industrial waste (Chandra and 
Chowdhary 2015; Munk et al. 2015; Roth and Spiess 
2015; Ece et al. 2017; Singh and Gupta 2020; Lecourt 
et  al. 2021). According to Chen et  al. (Chen et  al. 
2020), the site with the highest redox potential activ-
ity in laccases corresponds to the T1 site, one of the 
four Cu centers described from the X-ray structure 
of a laccase from Trametes trogii, which should be 
responsible for the oxidation of the substrate. How-
ever, this mechanism is still hypothetical and would 
work primarily for phenolic lignin substrates. Few 
studies have been able to associate microbial or fun-
gal laccase with the ability to degrade polyethylene; 
however, some efforts have been made, especially 
toward their potential to reduce polymer molecular 
weights (Cowan et al. 2022).

Peroxidases (EC number 1.11.1.x) are a set of 
oxidoreductases responsible for promoting the oxi-
dation of organic and inorganic compounds by oxi-
dation–reduction reactions using H2O2  as an elec-
tron-accepting co-substrate (Fig.  1) (Pandey et  al. 
2017; Twala et al. 2020). This protein family is very 
important for industrial and biotechnology processes. 
Generally, its applicability is linked to the process of 
dye discoloration, bioremediation, bioenergy, and tex-
tile industry activities. Many organisms can produce 
these sets of enzymes, such as animals, plants, and 
microorganisms, including Bacillus subtilis, Trametes 
villosa, Phanerochaete chrysosporium, and P. tremel-
losa (Pandey et  al. 2017; Zahmatkesh et  al. 2017; 
Twala et  al. 2020; Amobonye et  al. 2021). Within 
this large group, manganese peroxidases (MnPs EC 
1.11.1.13) and lignin peroxidases (LiPs EC 1.11.1.14) 
are the most commonly used peroxidases in C–C 
backbone plastic degradation processes. These 
enzymes contain FeIII in their active site, which forms 
a reactive complex upon reaction with H2O2. An elec-
tron donor, which could be a C–C polymer, reduces 
the complex to form a new compound, which is again 
reduced to regenerate the initial enzyme structure 
(Chen et al. 2020).

Ligninolytic enzymes have the ability to cleave 
the C–C bonds of lignin; however, it is difficult to 
compare these bonds with those present in syn-
thetic polymers. The complex structure of lignin 
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provides a wide variety of C–C bonds, with bond 
energies in the range of 205–308 kJ mol−1 (Guadix-
Montero and Sankar 2018). The energy required for 
the dissociation of the C–C bond of PE is approxi-
mately 350 kJ mol−1 (Popov and Knyazev 2014). It 
is therefore unlikely that this enzyme will substan-
tially degrade synthetic polymers with C–C bonds 
without physicochemical pretreatments. A recent 
study performed using quantum mechanism calcula-
tions analyzed the cleavage of C–C bonds of poly-
mers such as PE and PS. The results suggest that 
under certain operating conditions, laccase and per-
oxidase enzymes could abstract a hydrogen anion, 
which would cause the absence of a hydride anion 
at the Cβ position. This change would result in a sig-
nificant reduction of the C2–C3 bond, causing bond 
cleavage (Xu et al. 2019).

The analyzed studies (Table  1) reveal that most 
enzymatic degradation processes with polymers 
containing a C–C skeleton do not achieve robust 
degradation, especially in the absence of physico-
chemical pretreatments as the first degradation step. 
Laccase and peroxidase enzymes play a secondary 
role in attacking the oligomers or degradation prod-
ucts resulting from polymer cleavage. The effec-
tiveness of enzymatic mechanisms for these types 
of polymers depends largely on whether there is a 
prior step of incorporating double bonds or oxy-
gen, for which abiotic factors are often necessary 
(Fig.  1) (Wei et  al. 2020). Photoinitiated oxidative 
degradation is postulated to be the abiotic factor 
with the greatest effect on plastic waste found in the 
environment. It causes the appearance of free radi-
cals, which is more difficult to induce for polymers 
such as PE and PP since they lack double bonds. If 
radicals are formed, they react with the oxygen in 
the environment to form radical peroxides (Singh 
and Sharma 2008). This propagation step leads to 
chain scission or cross-linking. As a result, carbonyl 
functional groups such as aldehydes and ketones are 
obtained, the molecular weight decreases, hydrophi-
licity increases, and the polymer becomes suscep-
tible to fragmentation, which makes the enzymatic 
attack possible (Gewert et al. 2015).

Further evidence is needed to show that the bio-
degradation processes of polyolefins are indeed 
caused by microorganisms and their enzymes and 
not by external sources.
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2.1.2 � Enzymatic degradation of plastics 
with heteroatoms in the main chain

The group of plastics with a heteroatomic backbone, 
such as PET and PUR, have ester or amide bonds that 
can be hydrolyzed more easily than C–C bonds (Wei 
and Zimmermann 2017). As described by Tang et al. 
(2021), these polymers are susceptible to hydrolytic 
attack and the mechanisms include photooxidation, 
hydrolysis, and biodegradation. The main enzymes 
described for the cleavage of this group of polymers 
are hydrolases, lipases, esterases, proteases, and ure-
ases (Chen et al. 2020).

Cutin hydrolases or cutinases (EC 3.1.1.74) are 
inducible extracellular enzymes found in fungi and 
bacteria (Al-Tammar et al. 2016) that are capable of 
cleaving the ester bonds of cutin. Their hydrolytic 
activity can act on several water-soluble esters, plas-
tics, triglycerides, and synthetic fibers (Al-Tammar 
et  al. 2016). Cutinases represent the most common 
PET hydrolytic enzymes, which systematically belong 
to the serine hydrolase family next to lipases and car-
boxylesterases. Microorganisms capable of degrading 
plant biomass secrete cutinases, which then hydrolyze 
cutin, thereby releasing cutin monomers. Cutinases 
are present in both fungi and bacteria and have simi-
lar properties and mechanisms. Bacterial enzymes 
should be placed into a different cutinase subfamily 
due to differences in sequence and structure, most 
likely leading to their superior thermostability (Chen 
et al. 2018).

A recent study of the taxonomic distribution of 
PET-degrading enzymes showed that bacterial PET 
hydrolases in marine ecosystems occur predominantly 
within the phylum Bacteroidetes, whereas in terres-
trial environments, the phylum Actinobacteria domi-
nates (Danso et al. 2018). As an obvious explanation 
for this narrow distribution of PET hydrolases, the 
authors indicated that the ability to degrade PET most 
likely evolved rather recently and is therefore not yet 
a widespread metabolic tool. The highest number of 
characterized PET-degrading enzymes thus far are 
derived from Thermobifida fusca, Thermomonospora 
curvata, Fusarium solani, and Ideonella sakaiensis 
(Wei et al. 2014; Tournier et al. 2020).

Among Actinobacteria, PET-degrading enzymes 
from Thermobifida species (T. cellulosilytica, T. alba, 
and T. halotolerans) have been identified as well as 
one from the phylum Thermomonospora (T. curvata) 

and one from Saccharomonospora (S. viridis). The 
closely related cutinases Thc_CutI and Thc_Cut2 
from T. cellulosilytica have been shown to exhibit 
distinct hydrolytic efficiencies on PET, which is 
explained by the differences in their electrostatic and 
hydrophobic surface properties (Herrero Acero et al. 
2011, 2013). The extracellular hydrolases Tcur1278 
and Tcur0390 from T. curvata show similar catalytic 
and structural properties to cutinases from T. fusca 
and T. cellulosilytica and are able to degrade poly(ε-
caprolactone) and PET (Wei et  al. 2014). The cuti-
nase-like enzyme Cut190 from S. viridis, which was 
isolated from compost in Okayama (Japan), has been 
shown to catalyze surface hydrolysis efficiently and 
degrade the inner block of PET (Kawai et  al. 2014; 
Kawabata et al. 2017).

The cutinase-like PET hydrolase, designated 
PETase (EC 3.1.1.101.), catalyzes the degradation 
of PET to bis(2-hydroxyethyl) terephthalate (BHET), 
mono(2-hydroxyethyl) terephthalate (MHET), and 
terephthalic acid (TPA) (Fig.  1). MHET is then 
metabolized by a unique hydrolase named MHETase 
(EC 3.1.1.102) to yield TPA, which can be used by 
the central metabolism via the TPA degradation path-
way. Although PETase is most similar to the PET 
hydrolase from T. fusca, it shows superior hydrolytic 
activity and substrate specificity toward PET com-
pared to previously described cutinases. The crystal 
structure of PETase reveals significant differences, 
such as an additional disulfide bond (Chen et  al. 
2018). MHETase does not exhibit activity toward 
PET and is not homologous to any of the known 
MHET-degrading enzymes, which usually also 
degrade PET. Next to the MHETase-encoding gene 
in the genome of I. sakaiensis, there is a whole gene 
cluster that is almost identical to the TPA degradation 
gene clusters tphI and tphII of Comamonas sp. strain 
E6. The corresponding enzymes TPA 1,2-dioxyge-
nase and protocatechuate (PCA) dehydrogenase are 
assumed to catalyze the downstream metabolism of 
the TPA monomer (Yoshida et al. 2016). Liu and col-
leagues (Liu et al. 2018) isolated the PETase protein 
from I. sakaiensis and expressed it in an E. coli sys-
tem. They described the conservation of the catalytic 
machinery of α/β hydrolase and its specific substrate 
interaction. In this study, to improve the degradation 
of PET through PETase activity, several mutations 
were generated at specific sites in the PETase struc-
ture: substrate binding pockets (W130, M132, W156, 
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I180, Q90, S185, and S209), triad center residues 
(S131, D177, H208), and residues involved in the 
correct folding of the active site (W68, Q153, R94, 
the N212). As a result, the authors found that the 
mutations W68, Q153, R94, and N212 may contrib-
ute to a decrease in the hydrolytic activity of PETase. 
In addition, mutations Q90, M132, and W156 in the 
PETase protein could hinder PET recognition and 
therefore lead to a decrease in its hydrolytic activ-
ity. Lastly, mutations Y58A, W130A, W130H, and 
A180I increased PETase activity and were able to 
generate different changes on the PET material sur-
face (Liu et al. 2018).

Lipases (EC 3.1.13) have been described as cata-
lysts for the hydrolysis of both PET and PUR (Wilkes 
and Aristilde 2017). The effect of exploiting different 
Pseudomonas strains for the degradation of a PUR 
of commercial interest was studied. After biochemi-
cal and mutational analyses, two extracellular lipases 
(PueA and PueB) were identified as being involved 
in the degradation process (Hung et  al. 2016). A 
lipase from Thermomyces lanuginosus was studied 
in detail regarding the surface modification of PET. 
This enzyme efficiently hydrolyzed PET, leading to 
the formation of superficial polar groups and, con-
sequently, enhanced the hydrophilicity of the mate-
rial (Brueckner et al. 2008; Gricajeva et al. 2022). In 
addition, lipase B from Candida antarctica (CALB), 
which is one of the most studied and versatile lipases, 
was highly efficient in catalyzing the depolymeriza-
tion of PET (Carniel et al. 2017).

Apart from lipases and cutinases, esterases have 
also been shown to hydrolyze PET and PUR. True 
esterases (EC 3.1.1.3 carboxyl ester hydrolases) 
comprise a diverse group of enzymes, which typi-
cally hydrolyze the ester bonds of shorter chain fatty 
acids than lipases. They are known to show a wide 
substrate range and facilitate the utilization of carbon 
sources or other catabolic pathways (Gricajeva et al. 
2022). PET degradation has been achieved using the 
serine esterase PmC from P. mendocina (Ronkvist 
et  al. 2009) and the p-nitrobenzyl esterase BsEstB 
from B. subtilis (Ribitsch et al. 2011) as well as ester-
ases from T. alba and T. halotolerans. The thermoac-
tive Est119 from T. alba was classified as an esterase 
(Hu et  al. 2010), as was Thh_Est from T. halotoler-
ans (Ribitsch et al. 2012). Esterases were previously 
believed to be less efficient in degrading polyesters 
than cutinases or lipases, especially in hydrolyzing 

the polymer surface (Oeser et al. 2010; Ribitsch et al. 
2012). PUR is postulated to be cleaved by esterase 
activity. The bacterial enzyme urethanase exhibited 
esterase and protease activity and was able to hydro-
lyze urethane compounds (Akutsu-Shigeno et  al. 
2006; Liu et al. 2021).

Similar to polymers with a C–C backbone, pho-
toinitiation reactions are key to the biodegradation 
of PUR in the environment. This oxidation occurs in 
the α-methylene position and leads to the formation 
of hydroperoxides (Gewert et  al. 2015). Subsequent 
enzymatic reactions can then hydrolyze the ester or 
urethane bonds, with the latter being catalyzed at 
lower degradation rates. The enzymatic activity of 
urethanases is known to require the presence of aryl 
esters or carbamates, but the substrate recognition 
pattern of these enzymes remains unknown (Chen 
et al. 2020).

Due to the hydrolyzable ester or amide bonds 
that allow PET and some PUR polymers to be effec-
tively biodegraded into defined oligomers and mono-
mers (Wei et al. 2020), abiotic factors are not strictly 
needed for proper biodegradation.

3 � Strategies for efficient polymer biodegradation

Enzymatic plastic degradation is a field that is being 
investigated intensively. Two main aspects are being 
investigated: the enhancement of already existing 
enzymes and the identification of novel enzymes 
useful for the degradation of polymers that are not 
yet useable for enzymatic cleavage. Here, we pre-
sent selected biotechnological approaches with high 
potential to improve the enzyme degradation of syn-
thetic plastics and the valorization of plastic degrada-
tion products.

3.1 � Protein engineering and enzymatic degradation 
strategies

Knowledge of the three-dimensional structure of 
an enzyme is a prerequisite to designing improved 
biocatalysts rationally. Ideally, crystal structures 
should be obtained, but the rapid development of 
three-dimensional model building algorithms has 
allowed for a prompt advance. Most contributions 
address substrate affinity, either with the abovemen-
tioned binding domains or by modifying surface 
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hydrophobicity and charge, according to the struc-
ture of the catalytic site (Herrero Acero et al. 2013; 
Gricajeva et  al. 2022). PET-degrading enzymes 
must cleave the ester bond. Since biological poly-
mers such as cutin naturally contain ester bonds, 
cutinases have been applied to the degradation of 
PET. One example is a cutinase from Thermobi-
fida, which belongs to the most studied models 
(Roth et al. 2014). However, over the last four years, 
studies on the two-enzyme system PETase and 
MHETase from I. sakaiensis (Yoshida et  al. 2016) 
have emerged and have allowed for a clearer under-
standing of the hydrolytic mechanism (Han et  al. 
2017; Joo et  al. 2018). PETase breaks down PET 
into MHET and BHET. MHETase cleaves MHET 
and releases the original monomers TPA and EG.

In a subsequent study, the X-ray crystal structure 
of the I. sakaiensis PETase revealed features com-
mon to both cutinases and lipases while exhibit-
ing a more open active-site cleft than homologous 
cutinases. The authors exchanged two active-site 
residues to conserved amino acids in cutinases and 
were able to thus narrow the binding cleft. This 
change led to improved PET degradation, which 
suggested that the I. sakaiensis PETase is not fully 
optimized for crystalline PET degradation, despite 
presumably evolving in a PET-rich environment 
(Austin et al. 2018).

One of the most recent achievements is the con-
struction of chimeric proteins that include regions 
of both PETase and MHETase, the performance 
of which is improved compared to the individual 
enzymes (Knott et  al. 2020). The idea of building 
chimeric enzymes arose from the fact that the two 
enzymes act synergistically when placed in the same 
reaction system. This example is an interesting pros-
pect for the development of more efficient enzymes 
for plastic degradation in the future.

The use of enzyme mixtures is also an interesting 
approach to improving results. Carniel et  al. (2017) 
achieved an eight-fold increase in TPA yield when 
they used both CALB lipase and HiC. Bermúdez-
García et  al. (2019) described the role of the differ-
ent cutinases produced by Aspergillus nidulans and 
the differences in the products obtained after cutin 
hydrolysis. They observed that when a mixture of 
two was used, ANCUT1 and ANCUT3, in a specific 
order, the TPA yields from this cutinase-treated PET 
increased by 40 times.

To date, the most active wild-type thermophilic 
PET hydrolase is leaf-branch compost cutinase (LCC) 
(Wei et al. 2019), a polyester hydrolase that originates 
from a plant compost metagenome (Sulaiman et  al. 
2012). More recently, a novel metagenomic hydrolase 
(PHL7) was isolated from plant compost that showed 
the ability to hydrolyze completely amorphous post-
consumer PET packaging films with high efficiency 
(Sonnendecker et  al. 2022). In 2020, a depolym-
erization degree of > 50% was reported after 24  h 
at 70–72  °C, with amorphous PET films in reaction 
tubes (Falkenstein et al. 2020) by applying an enzyme 
concentration of the wild-type LCC in the range of 
1–2  mgenzyme/gPET. Tournier et  al. used an improved 
LCC and were able to achieve 90% PET depolymeri-
zation into monomers over 10 h at 65 °C with a pro-
ductivity of 16.7 g of terephthalate per liter per hour 
with an enzyme concentration of 3  mgenzyme/gPET in 
a bioreactor. The amorphized post-consumer PET 
facilitated easier access for the enzyme (Tournier 
et  al. 2020). Using amorphous PET films for LCC-
catalyzed hydrolysis in a stirred tank reactor, Tiso 
et  al. obtained over 47% depolymerization within 
the first 24 h at 70 °C (Tiso et al. 2021a). While all 
these studies focused on PET hydrolysis at elevated 
temperatures, there have also been efforts to engineer 
PET hydrolases to function at ambient temperatures. 
Cui et  al. generated a PETase called DuraPETase, 
which exhibits a melting temperature that is elevated 
by 31  °C and features enhanced degradation toward 
semicrystalline PET films at mild temperatures (over 
300-fold) (Cui et al. 2021). Based on machine learn-
ing-guided engineering, Lu et al. (2022) succeeded in 
generating a PET hydrolase variant (FAST-PETase) 
robust to changes in pH and temperature, which was 
shown to degrade untreated post-consumer PET 
almost entirely within one week (Lu et al. 2022).

Further developments have been made in terms 
of plastic degradation monitoring. Frank et al. estab-
lished a real-time noninvasive analytical method to 
monitor PET degradation by measuring the changes 
in the dielectric properties of PET films. Compared 
to optical methods, this technique is also insensitive 
to changes in the solution composition, thus enabling 
both high temporal resolution and parallel processing 
(Frank et al. 2022).

Enzymatic degradation of PET appears to be clos-
est to industrial application. It is interesting to note 
that the thermochemical recycling of this polymer is 
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a reality worldwide, especially in the case of beverage 
bottles. However, this recycling process results in the 
deterioration of its mechanical properties (Ragaert 
et  al. 2017). Other promising approaches to enzy-
matic plastic degradation include the use of polyure-
thanases and polyamidases to degrade nylon as well 
as laccases and the multiple copper-binding enzymes 
that degrade PVC, PE, and PS. PET, nylon, PVC, 
PE, and PS together represent approximately half of 
the synthetic plastics market (Grand View Research 
2021, Plastic Market Size, Growth & Trends Report, 
2021–2028).

Several studies have shown the growth of differ-
ent microorganisms on these polymers using them as 
carbon sources. However, there are very few reports 
that explore the use of enzyme extracts or superna-
tants. More detailed information has recently become 
available on the production of laccases by several 
microorganisms, particularly by basidiomycetes, and 
the application of these preparations in polymer deg-
radation. Santo et  al. (2013) reported obtaining lac-
case from R. ruber and achieving the degradation of 
PE films, as assayed by weight loss. The discovery of 
numerous sources of laccases and the cloning of sev-
eral genes in widely accepted models, such as Pichia 
pastoris, leads to the belief that economic sources of 
these enzymes will be available in a not distant future 
and that enzymatic degradation processes may be 
developed. Moreover, a recent high-throughput RNA-
seq study reconstructed the whole metabolic pathway 
behind PE degradation in Rhodococcus bacteria. In 
addition to the identification of different multicop-
per oxidase laccase-like enzymes involved in the first 
step of oxidation, other oxidative systems were also 
detected (Zampolli et  al. 2021). The fact that these 
enzymes are used in the bioremediation of several 
toxic products further widens the market. In addition, 
laccases are even able to degrade PVC (Sumathi et al. 
2016).

Knowledge about polyurethanes has also advanced 
in several respects. In addition to the growing num-
ber of studies showing new species that can degrade 
different forms of this polymer, the role of enzymes 
in its degradation is more deeply understood. Enzyme 
structure studies have yielded new models, and the 
results pave the way for the design of more efficient 
catalysts (do Canto et  al. 2019). Lastly, an increas-
ing number of studies are investigating the sources, 
genetic regulation, and just recently, the structure of 

amidases; the mechanisms that lead to nylon degrada-
tion are well understood and more efficient, and ther-
mostable mutants have been designed (Negoro et al. 
2018).

3.2 � Reactor design for polymer degradation

Studies on bioreactor design in plastic biodegradation 
processes are scarce. This subject must be addressed 
at the laboratory scale and will allow for the scale-
up of the biodegradation processes of persistent pol-
ymers. Optimizing the reactor design helps to adapt 
to the necessary conditions, such as the mixing effi-
ciency as well as mass and heat transfer, which are 
key processes for effective enzymatic hydrolysis. The 
optimized bioreactor must ensure the efficient interac-
tion between the substrate and the catalyst, which is 
reflected in the degree of bioconversion of the initial 
substrate to the degradation products. Furthermore, 
a balance between transfer conditions and biological 
sensitivity to shear stress is essential to avoid losses 
in enzyme activity (García-Aguirre et al. 2009).

For the enzymatic hydrolysis of lignocellulosic 
biomass (LCB), the use and optimization of the reac-
tor design have been widely studied, with stirred tank 
bioreactors and membrane bioreactors being the most 
commonly used designs (Pino et al. 2018). The out-
come of these studies can serve as a reference to apply 
similar strategies for plastic degradation processes 
since the challenges involved in the use of solid sub-
strates and the difficulties of the enzymatic degrada-
tion process are comparable for LCB and synthetic 
plastic materials. One of the determining factors is the 
solid loading in the system because it is reported that 
up to 12–15% (w/w) solids appear to be the loading 
limit that still allows for adequate mixing in a stirred 
tank reactor. Higher solid loading, however, leads to 
problems in transfer phenomena, resulting in a non-
Newtonian fluid and a decrease in enzyme efficiency 
(Hodge et al. 2009; Du et al. 2014). For these cases, 
alternative bioreactor configurations have been pro-
posed, such as the use of horizontal rotating tubular 
bioreactors or the exchange of the impellers of stirred 
tank reactors with a peg mixer, an anchor impeller, or 
a double helical impeller (Pino et al. 2018).

Of the few examples found in the literature 
regarding reactor design in synthetic plastic deg-
radation processes, an interesting description was 
given by Barth et al. (2015) showing the advantages 
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of performing PET degradation in an ultrafiltration 
membrane reactor to avoid product inhibition of the 
enzyme. In addition, two key factors were crucial: 
buffer and pH control as well as agitation within the 
reactor. Enzymatic reactors do not require high tem-
peratures or pressures, but certainly, the reactor must 
withstand the pretreatment conditions and tempera-
tures over a range of 60–80  °C and thus must have 
a temperature control system. According to Andrić 
et al. (2010), product inhibition has been identified as 
one of the main obstacles to enzyme-based reactions, 
directly affecting biocatalytic conversion. Under this 
scenario, membrane reactors provide several advan-
tages, such as product removal, reuse of enzymes, 
and fed-batch feeding of enzymes. However, some 
issues, such as membrane fouling and issues with 
scale-up, still make it challenging to set up successful 
processes.

The use of two-phase partitioning bioreactors 
(TPPB) has proven to be efficient for the degrada-
tion of water-insoluble recalcitrant compounds. The 
proper functioning of TPPB depends primarily on the 
immiscible solvent to be incorporated, for which the 
partition coefficient must be appropriate and specific 
for the degradation system. In addition, it is important 
that the solvent of choice does not significantly affect 
the activity of the enzyme. There are two operation 
possibilities when using TPPB, depending on whether 
the substrate is (i) Dissolved in the organic solvent or 
(ii) In solid form in the aqueous phase. In the first 
case, the appropriate diffusion of the substrate from 
the solvent to the aqueous phase is required consid-
ering that the enzymatic reaction occurs in the aque-
ous phase. The rate of substrate transfer is essential in 
this case, in which mass transfer is strongly interface-
dependent and directly affects the rate of biodegrada-
tion (Eibes et al. 2007). In the second case, the aim is 
to keep the solid substrate in the aqueous phase with-
out contact with the solvent, thus preventing its dete-
rioration or dissolution. This second model aims for 
the degradation products of the substrate to migrate 
into the solvent and thus prevent product inhibition 
(Andrić et al. 2010).

A recent study showed the design of a multiphase 
enzymatic reactor for the biotransformation of 
poly(cis-1,4-isoprene) rubber (Andler et  al. 2020). 
The tested setups allowed for the isolation of the rub-
ber particles immersed in the aqueous phase from the 
organic phase to prevent deterioration of the rubber 

particles due to the solvent in use. During the assay, 
an oxygenase, the latex clearing protein from G. poly-
isoprenivorans strain VH2 (Lcp1VH2), was added to 
the aqueous phase containing rubber particles. After 
five days of incubation, 42–52% of the initial polymer 
mass was transformed into oligoisoprenoids as degra-
dation products.

3.3 � Microbial conversion of plastic monomers to 
value‑added products

In a fully circular plastic bioeconomy, the products 
of plastic biodegradation must be valorized. For con-
ventional repolymerization, the monomers must be 
purified to exclude contaminants and, in many cases, 
to obtain pure single monomer-containing fractions. 
In contrast to the recycling of plastic waste material, 
microbes can be used for a process called upcycling. 
Here, hydrolysates are used for the de novo synthesis 
of valuable compounds that do not retain the molecu-
lar structure of the monomers in use. In nature, bio-
logical polymer degradation usually does not yield 
high-value products for subsequent processing since 
microbes metabolize monomers directly and gener-
ate biomass and CO2. Efficient plastic upcycling thus 
involves metabolic engineering. In theory, the com-
plete arsenal of biosynthetic pathways is available 
for the conversion of degraded polymers into value-
added products. This concept of a metabolic fun-
nel, called bow-tie metabolism, was presented in the 
context of plastic degradation by Tiso et al. (2021b), 
who evaluated the potential use of plastic monomers 
as microbial substrates (Fig. 2) (Sudarsan et al. 2014; 
Tiso et al. 2021b).

Whole-cell plastic degradation usually comprises 
two steps: depolymerization and subsequent metabo-
lization of mono- and oligomers, but conventional 
synthetic plastics are highly calcitrant to microbial 
depolymerization (Tiso et  al. 2021b). Sugar poly-
mers such as cellulose and aromatic polymers such 
as lignin are employed as carbon sources by many 
microbes, whereas the commercial degradation of 
lignocellulose and subsequent monomer use have 
not yet been reached. Since the challenges are simi-
lar, some of the already established solutions for lig-
nocellulosic biotechnology might also be beneficial 
for the microbial or whole-cell depolymerization 
of plastics (Ellis et  al. 2021). For biopolymer deg-
radation, microbes dispose of intrinsic enzymes for 
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depolymerization, but this is usually not the case for 
conventional recalcitrant plastics. In many cases, con-
ventional (or synthetic) plastics have high glass tran-
sition temperatures, which entails the need to perform 
enzymatic degradation separately from the microbial 
metabolization of the monomers.

The subsequent metabolization of the resulting 
monomers is not readily available in nature; however, 
a few metabolic pathways are present in specialized 
microorganisms. For ethylene glycol (EG) derived 
from PET, various organisms have been described 
that use EG as the sole source of carbon and energy 
under both aerobic and anaerobic conditions (Fincher 
and Payne 1962; Gaston and Stadtman 1963). Sev-
eral research groups are working on establishing ana-
bolic routes for molecules that are not metabolized 
thus far, such as TPA and EG from PET (Kenny et al. 
2008; Narancic et  al. 2021) or monomers from pol-
yurethanes, adipic acid (Ackermann et al. 2021) and 
1,4-butanediol (Li et al. 2020). Recently, Tamoor and 
co-workers (2021) discussed the involvement of dif-
ferent enzymes in the recycling and bioconversion 
of commercial polymers composed of a mixture of 
polylactic acid and polyethylene terephthalate (PLA-
PET). These enzymes include PETase and MHETase 
from I. sakaiensis; esterases produced by Bacillus and 
Nocardia; and lipases from T. lanuginosus, C. antarc-
tica, Triticum aestivum, and Burkholderia spp. LCCs 
generate monomers that can be upcycled into small 
molecules with added value, such as cyclic acetals, 
1,3-propanediol, and vanillin.

The valorization of plastic biodegradation products 
via cost-effective technologies is urgently needed to 
achieve a circular economy system in which not only 
plastic monomers are useful substrates but also inter-
mediates derived from subsequent mineralization 
processes can be used as new raw materials in further 
upcycling routes. Unfortunately, the global economy 
is not yet ready to embrace the overall process fully 
because of (i) The lack of cost-effective and adequate 
technologies to manage the different plastic polymers, 
(ii) The need for well-characterized and widely avail-
able monomer feedstocks for standardized and repro-
ducible upcycling systems, and (iii) The kinetic and 
thermodynamic limitations of plastic deconstruction 
and biodegradation. Another misleading aspect is that 
upcycling concepts often overlap with recycling, i.e., 
obtaining monomers to make additional plastic prod-
ucts (Hou et al. 2021). Thus, further plastic wastes are 

generated and circularly reproduce the plastic waste 
issue to be addressed.

4 � Techno‑economic valorization of plastic 
biodegradation

Techno-economic analysis (TEA) allows for a pre-
diction of the necessary capital and operating costs 
associated with the process to project a minimum 
selling price (MSP). TEA is widely used in the analy-
sis of new products; however, its application in bio-
logical or enzymatic recycling processes has only 
been employed to a limited extent. To incorporate 
TEA into biodegradation processes, it is necessary 
to apply the concept of upcycling and identify value-
added products based on the products of enzymatic 
degradation.

One of the important economic factors revealed 
by TEA of enzymatic recycling processes are the 
enzyme production costs. These costs depend on fac-
tors/parameters such as the enzyme type, expression 
strategy, production scale, and purification process 
(Ferreira et al. 2018; Tournier et al. 2020). It is esti-
mated that the production value of enzymes can be in 
the range of $25–$110/kg, although enzymes such as 
fungal cellulases can have lower prices of approxi-
mately $5/kg (Klein-Marcuschamer et  al. 2012). 
Another important aspect to consider when working 
with waste, such as plastic waste, are the costs asso-
ciated with the pretreatment, which produces a clean 
substrate with physicochemical characteristics that 
favor the enzymatic process.

Recently, a TEA, life-cycle analysis (LCA), and 
socioeconomic impact study were performed for a 
PET recycling process based on enzymatic depolym-
erization (Singh et  al. 2021). In this study, the PET 
recycling process was divided into three sections: (i) 
Feedstock pretreatment, (ii) Enzymatic PET depo-
lymerization, and (iii) Product and co-product recov-
ery. Within the general characteristics for modeling, 
a processing capacity of 150  Mt of PET flakes per 
day was considered, with a recyclable PET fraction 
of 0.95 after discarding contaminants such as labels, 
caps, and adhesives. The pretreatment included an 
extrusion process followed by a size reduction pro-
cess with a microgranulator. The enzymatic depo-
lymerization process was performed using a PET 
hydrolase in a series of 950  m3 stirred tank reactors 
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with a solid loading of 15% as a base case. For prod-
uct recovery, a series of unit operations, including 
crystallization, salt recovery, and distillation were 
considered to achieve the recovery of the main prod-
uct, TPA, and two byproducts, EG and sodium sul-
fate. The modeling assumed a recovery of 90% of 
the TPA and 50% of the EG with a selling price of 
0.66 USD/kg for TPA, 0.96 USD/kg for EG, and 0.15 
USD/kg for sodium sulfate, considering the mar-
ket price of the last five years. The analysis showed 
that the total capital investment for the plant design 
amounts to 67 M USD. The most influential costs on 
the final TPA price were the downstream process-
ing steps for product recovery with 29% of the total 
costs, while the pretreatment and depolymerization 
processes reached a similar share with 20% of the 
total costs each. The operating costs were estimated at 
44 M USD, with feedstock, electricity, chemicals, fil-
ter maintenance, activated carbon bed, and membrane 
replacement costs predominating. The TEA results 
indicated a TPA selling price of 1.93 USD/kg, which 
is competitive with the manufacturing price of virgin 
TPA. In addition, the socioeconomic benefits were 
highlighted, in that the total supply of energy was 
reduced by 69–83% and greenhouse gas emissions 
were reduced by 17–43%.

Another study reported TEA for upcycling PET 
into two bio-based polymers: polyethylene furanoate 
(PEF) and polytrimethylene terephthalate (PTT) 
(Roux and Varrone 2021). The depolymerization 
products EG and PTA were used as precursors of the 
production of PEF and PTT, respectively. In addi-
tion, cellulose extracted from LCB was used for PEF 
production, while crude glycerol was used for PTT 
production. Considering waste streams of 68,000 tpa 
of PET, 132,000  tpa of cellulose, and 65,000  tpa of 
glycerol, the results of the designed process reached 
a production of 59,000  tpa of PEF and 53,000  tpa 
of PTT. The analysis established that the MSP esti-
mated for these second generation-derived polymers 
was 3.13 USD/kg. Although the calculated price was 
three times higher than the current selling price of 
PET, the physicochemical and recyclability properties 
of PEF and PTT are similar or even superior to those 
of PET (Kurian 2005; Fei et al. 2020).

The presented cases demonstrate that through 
the valorization of existing plastic waste streams, it 
is possible to transition toward a more sustainable 
plastic industry, with PET being the model polymer. 

However, industrial validation is still lacking, and 
there are still important limitations due to the diffi-
culty of generating defined degradation products of 
polymers with greater resistance to the depolymeriza-
tion process.

5 � Environmental implications of enzymatic 
degradation of synthetic plastics

Plastics can be found ubiquitously in different envi-
ronments due to the multiplicity of their sources and 
transport routes within and across freshwater and ter-
restrial ecosystems. The final fate of plastic waste is 
a consequence of different processes: (i) The accu-
mulation of plastic materials in environmental com-
partments poses a risk not only to specific ecosystems 
but also to human health. This is especially the case 
for the most common polymers that often contain 
additional solubilizers, additives, and other chemi-
cal agents to improve their mechanical and physical 
characteristics (Danso et al. 2019). (ii) Abiotic oxida-
tion occurs through different pathways, including UV 
radiation, temperatures, and oxygen levels (Mohanan 
et  al. 2020). This result implies not only the partial 
degradation or activation of plastic polymers but 
also the consequent release of harmful compounds, 
including volatile organic compounds (VOCs), that 
can interact with the surrounding ecosystem (La Nasa 
et  al. 2021). (iii) When plastic is properly collected 
and transported to waste treatment plants, chemical or 
mechanical recycling and incineration are the conven-
tional treatment methods for plastic waste, although 
the majority of plastic waste has always been dis-
posed of in landfills (Zhang et  al. 2021). Although 
the waste-to-energy process has also been adopted 
to recover energy from waste treatment, it only cov-
ers a small fraction of polymer waste and yields a 
multiplicity of environmental consequences, such as 
toxic gas production (furans and dioxins) and heavy 
metal-contaminated ash. (iv) Recycling and/or bio-
degradation processes involving microorganisms, or 
their enzymes are the most eco-friendly methods that 
have not yet been established (Lee and Liew 2021). 
In fact, in plastic-contaminated environments, micro-
bial communities can adapt and break down polymers 
into simpler compounds by biochemical transforma-
tions. Several processes are involved in the microbial 
attack: Biodeterioration affects the superficial part 
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of the polymer and is also enhanced by abiotic and 
environmental factors. Biofragmentation of the bio-
deteriorated plastics involves a depolymerization pro-
cess, generating plastic fragments with lower molecu-
lar weights or oxidized molecules. The assimilation 
routes are activated by microorganisms that form 
biofilms on the plastic surface and/or produce active 
catalytic enzymes able to degrade or biotransform 
the synthetic polymers. Lastly, during the mineraliza-
tion process the oxidized plastic derivatives are trans-
ported into the cells and diverse enzymatic reactions 
lead to complete degradation into oxidized metabo-
lites, which include CO2 and H2O (Amobonye et al. 
2021). Therefore, plastic polymer biodegradation 
would be the preferred strategy under specific envi-
ronmental conditions and in the presence of micro-
bial communities able to cope with their enzymatic 
arsenals.

6 � Conclusion

The biodegradation of synthetic plastics has been 
studied extensively, and the examples illustrated in 
this review show that the basic tools for developing 
enzymatic degradation processes at both the molec-
ular and process strategy levels are already avail-
able. However, to achieve feasible biotechnological 
processes, biodegradation rates must be improved. 
Screening for enzymes to identify novel activities and 
establish higher degradation activities on heteroatoms 
as well as C–C backbone plastics will be fundamen-
tal. In addition, it will be crucial to improve the effi-
ciency of plastic biodegradation processes: (i) Engi-
neering existing enzymes and microorganisms will 
help to establish higher degradation rates. (ii) Apply-
ing degradation strategies with multiple enzymes will 
take advantage of synergistic effects that have still 
scarcely been studied. (iii) Focusing more in-depth 
studies on the optimization of the reactor design will 
improve mass transfer conditions and avoid potential 
product inhibition. (iv) Lastly, constructing metabolic 
pathways to upcycle the obtained plastic monomers 
to high-value products efficiently closes the loop and 
primarily contributes to the economic feasibility of 
the overall process. Assessing these strategies com-
bined with the broad array of available pretreatment 
methods and abiotic factors will additionally lead to 
higher biodegradation rates and consequently more 

efficient biorecycling processes. Eventually, the bio-
logical recycling of plastic materials has the poten-
tial to close the plastic cycle from monomers to new 
products and lead to a sustainable, zero-pollution 
system.
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