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Microbes do not live in isolation but in microbial communities. The relevance of microbial communities is
increasing due to growing awareness of their influence on a huge number of environmental, health and
industrial processes. Hence, being able to control and engineer the output of both natural and synthetic
communities would be of great interest. However, most of the available methods and biotechnological
applications involving microorganisms, both in vivo and in silico, have been developed in the context of
isolated microbes. In vivo microbial consortia development is extremely difficult and costly because it
implies replicating suitable environments in the wet-lab. Computational approaches are thus a good,
cost-effective alternative to study microbial communities, mainly via descriptive modelling, but also
via engineering modelling. In this review we provide a detailed compilation of examples of engineered
microbial communities and a comprehensive, historical revision of available computational metabolic
modelling methods to better understand, and rationally engineer wild and synthetic microbial
communities.
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1. Introduction

Microbes play a pivotal role in fields as diverse as human
health, environmental science and biotechnology. Focus on the lat-
ter, microbial production of chemicals has become increasingly
attractive across industry due to its role in delivering sustainable
manufacturing technology. Microbial biotechnology platforms
integrating systems and synthetic biology tools have successfully
contributed to delivering a large portfolio of chemical compounds
[1–7]. Early applications of systems metabolic engineering to max-
imize metabolite production focused on engineering single com-
petitive strains, and thus faced hurdles such as metabolic burden
and heterogeneity [8,9]. Consequently, production of target chem-
icals is not always cost-effective and great efforts must be made to
improve yield and productivity. The use of microbial consortia has
thus been promoted as an alternative to overcome these limita-
tions [10,11] because cooperation among several strains allows
microbial communities to function at higher levels of complexity
than individual cells. Pathway modularization allows distribution
of metabolic reactions among highly specialized strains, thus
reducing genetic load requirements per individual. Increased bio-
production performance and efficiency in source transformation
can be achieved using different substrates, and/or synthesizing
products in parallel, and/or avoiding intermediate metabolite accu-
mulation. In addition, robustness provided by microbial communi-
ties avoids environmental stresses [12–14].

The advantages described have underpinned recent progress in
analysing, understanding, designing and developing both natural
and synthetic microbial communities. Such progress has been
applied to improving health, food and chemical production and
to dealing with environmental challenges. Therefore, microbial
biotechnology will probably lead to microbial community engi-
neering using species selection, manipulation of strain ratios and/
or genetic engineering of community members. However,
metabolically engineering microbial communities entails certain
unresolved challenges [15], e.g. defining co-culture conditions
and growth compatibility, and selecting the cross-feeding metabo-
lites among different strains in the consortium. Microbial commu-
nity modelling emerged with the need to improve the knowledge
and understanding of interactions among heterogeneous cells
[16]. Such interactions can be described using metabolite exchange
modelling, where the actual metabolites and the extent to which
they are exchanged need to be defined. Community interactions
include cross-feeding, competition for nutrients, symbiotic rela-
tionships (such as plant-microorganism) or parasitism (such as
human-pathogen) or multi-tissues. Therefore, these pioneering
efforts have highlighted the need for novel computational-system
approaches in order to facilitate more rational designs. Here we
review pioneering achievements in the field of microbial
consortia-based bioprocesses and available computational meta-
bolic modelling tools that provide a better understanding and sup-
port rational engineering of microbial communities.
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2. Learning from nature: functional and stability-based design
of synthetic microbial consortia

In nature, microorganisms are involved in a large array of com-
plex interactions with other organisms and their environment,
thus contributing to stability and functionality. Among others, such
complex relationships traditionally include neutralism, commen-
salism, amensalism, mutualism, predation and competition. These
natural relationships have been profusely used as mechanisms for
the establishment of synthetic metabolic interactions when
designing synthetic microbial communities (SMC) [13,17,18]
(Fig. 1A). Therefore, the two main questions emerging when
designing a SMC are: i) how will the microbial community struc-
ture be established to ensure the consortium’s stability? and ii)
how will relationships be established within the SMC to drive
the community’s output?

The stability of the population in a microbial community
involves complex interactions among its components. These rela-
tionships are usually established through primary interaction
mechanisms i.e., interactions that are strictly necessary to deliver
the consortium’s output. However the relationships within a given
microbial consortium are not exempt from the emergence of sec-
ondary interactions which, although contributing to the commu-
nity’s stability and/or functionability , are not strictly necessary.
For instance, these primary and secondary interactions are easily
visible in SMCs formed by Synechococcus elongatus and Pseu-
domonas putida. The production of sucrose by the cyanobacterium
provides an organic carbon source to the heterotrophic partner and
is the primary interaction within the consortium, while the pro-
duction of O2 derived from S. elongatus’ photosynthetic activity
and the CO2 released by P. putida would be secondary interactions,
as additional sources of CO2 and O2 exist in the consortium [19,20].
In terms of stability, and considering only primary interactions,
microbial relationships can be grouped into two main categories:
unidirectional and multidirectional. Unidirectional interactions
are those in which the population of one of the consortium’s com-
ponents is regulated (either positively or negatively) by another
component. In contrast, multidirectional interactions are those in
which all of the community’s microbial components actively inter-
act with each other to support the stability of the entire consor-
tium via positive or negative feedback (Fig. 1B). Similarly,
relationships within the community also determine to a great
extent the SMC’s functionality and level of complexity. Overall,
functionality as a function of complexity level can be categorized
as non-distributed or distributed. Non-distributed functionality
implies low complexity levels and often only one member of the
consortium is responsible for the final community’s output. On
the contrary, more complex SMC outputs require the involvement
of several community partners within the consortium. Labour is
split in a distributed process, thus increasing the consortium’s effi-
ciency. SMC can therefore be classified into four main categories
according to the relationships contributing to stability and



Fig. 1. A, Schematic representation of the basic ecological interactions between the microbial strains in co-culture, green positive and red negative interactions. B, Schematic
representation of the SMCs categories. Black arrows stability interactions and green arrows functionality interactions. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

B. García-Jiménez, Jesús Torres-Bacete and J. Nogales Computational and Structural Biotechnology Journal 19 (2021) 226–246
functionality: Unidirectional Non-Distributed, Multidirectional
Non-distributed, Unidirectional Distributed and Multidirectional
Distributed (Fig. 1B). In order to define the field’s state-of-the-art,
in the following sections we have categorized and contextualized
current efforts on synthetic microbial consortia engineering based
on the above classification. A detailed review of outstanding exam-
ples is summarized in Table 1.

2.1. Unidirectional non-distributed

This category includes the simplest community, in which stabil-
ity is provided by a single unidirectional relationship (e.g., one
microbial component is responsible for feeding the other, either
directly or by feedstock processing) while the second strain is in
charge of the whole consortium’s functionality. Unidirectional
Non-Distributed SMC designs provide significant advantages over
single cultures by joining complementary metabolic traits of the
cognate microbial partners. Therefore, SMC expand the scope of
the target bioprocess in terms of either access to new feedstock
and/or providing additional biosynthetic properties. In this scenar-
io, a single component of the consortium addresses the catabolism
of a complex feedstock (e.g., xylan, cellulose, syrup, etc.) to release
low-complexity carbon sources. These easy-to-uptake carbon
sources are subsequently used by the other component of the con-
sortium, which is in charge of delivering the non-distributed
biotechnological output. Many consortia fitting these criteria have
already been constructed, mainly for the production of biofuels. For
instance, the fungi Trichoderma reesei was used to hydrolyse cellu-
lose in a co-culture with Escherichia coli, which was in charge of
synthetizing isobutanol [21]. Similarly, the co-culture of two
clostridium species (C. thermocellum and C. saccharoperbutylaceton-
icum) were used for the production of butanol [18], while a consor-
tium made up of two specialized strains of E. coli was used to
produce ethanol from xylan [25]. Within this category, an interest-
ing group of consortia are those in which one of the components is
the producer of the primary carbon source. For instance, the
cyanobacteria S. elongatus has been profusely used as sucrose pro-
ducer in co-cultures with heterotrophic organisms such as P. putida
and E. coli for the production of polyhydroxyalkanoates and 3-
hydroxypropinoic acid, respectively [19,20].
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2.2. Multidirectional non-distributed

These SMC add an additional layer of complexity. In these con-
sortia, the stability of the community is achieved through the
establishment of co-dependency relationships between commu-
nity microorganisms, while only one consortium component is in
charge of the labour. Co-dependency relationships allow better
control of the stability of microbial populations. An example of a
co-dependency interaction is metabolite cross-feeding, where all
members of a consortium are responsible for feeding each other.
For example, Sgobba et al [23] developed a multidirectional non-
distributed consortium for cadaverine production in which a lysine
auxotroph E. coli strain released glucose from starch, feeding C. glu-
tamicum that in turn produced lysine for E. coli. Multidirectional
relationships can also be established by competition mechanisms,
e.g. in a co-culture of Bacillus subtilis and Streptomyces sp. Mg1, the
growth of B. subtilis stimulated the production of chalcomycin A by
Streptomyces sp Mg1, which is an inhibitor of B subtilis’ growth
[24]. An interesting approach to stabilizing SMC by means of com-
petition mechanisms is the introduction of cheaters strains. For
example, when Pseudomonas aeruginosa and Bulkholderia ceno-
ceparia were co-cultured under iron-limiting conditions, despite
both microorganisms possessing the ability to secrete sidero-
phores, only P. aeruginosa achieved stable growth. When mutant
strains of P. aeruginosa unable to secrete siderophores were used
instead, both microorganisms grew at the expense of the sidero-
phores secreted by B. cenoceparia [25].

2.3. Unidirectional distributed

This category adds complexity as all members in the SMC con-
tribute to the system’s functionality. Engineering Distributed SMC
relies mainly on splitting complex biosynthetic pathways among
two or more microbial strains. The division of microbial labour
allows resource optimization, thus reducing metabolic burdens
and increasing the efficiency of the whole process. In an interesting
example E. coli and the yeast S. cerevisiaewere used for the produc-
tion of oxygenated taxanes. Both strains were engineered so that
E. coli produced taxadiene, which in turn was used by S. cerevisiae
to produce oxygenate taxane [26]. In this SMC, E. coli utilized



Table 1
Recent examples of engineering Synthetic Microbial consortia.

Microorganism Interaction Goal to optimize C-source Yield Ref.

Unidirectional Non-Distributed
Synechoccocus elongates

Pseudomonas putida
S. elongatus produces sucrose from CO2 and light. It
was used for P. putida, growing and cleaning 2,4-
DNT while produces polyhydroxyalcanoates (PHA)

- Sucrose production
in presence of 2,4-
DNT

- 2,4-DNT cleaning
- PHA production

CO2 - 1.2 g/L sucrose at 120h.
- 250 mM 2,4-DNT clean-

ing at 24 h.
- 5.1 mg/L day PHA

[19]

S. elongatus
Escherichia coli

S. elongatus produces sucrose from CO2 and light.
The sucrose is used as C-source for E. coli, producing
3-hydroxypropinoic acid (3-HP)

- 3-HP production
- Sucrose production

CO2 - Up to 68.29 mg/L 3-HP at
7 days

- 600 mg/L sucrose at 144
h

[20]

Klebsiella pneumoniae
Shewanella oneidensis

K. pneumoniae uses glycerol as C-source, producing
lactate. S. oneidensis uses the lactate producing
electrons.

- Lactate production
- Flavin production

(S. oneidensis)
- Inoculum ratio
- Electric power

Glycerol - 2.1-times increase lac-
tate production

- 7.9-time increase flavin
production

- Inoculum ratio 1:10
- 19.9 mW/m2 power

density

[139]

Ralstonia eutropha
Bacillus subtilis

B. subtilis hydrolyses sucrose in fructose and
glucose, producing propionic acid. They are used by
R. eutropha, producing PHA or poly (3-
hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-
3HV].

- Biomass
- PHA production
- P(3HB-co-3HV)

production

Sucrose - Biomass 3.79 g dcw/L
- PHA 63% w/w
- P(3HB-co-3HV) 66% w/w

[140]

Citrobacter amalonaticus
Sporomusa ovata

C. amalonaticus uses CO as carbon source,
producing CO2 and H2 which are used by S. ovata
producing acetate

- Acetate production CO - 0.157 mM acetate from
0.439 mM CO

[141]

Trichoderma reesei
Rhizopus delemar
or
T. ressei
R. orizae

T. reesei hydrolyses cellulose into monomeric
sugars. R. delemar uses these sugars producing
fumaric acid and R. oizae producing lactic acid.

- Organic acids
production

Corn stove - 6.87 g/L fumaric acid
- 4.4 g/L lactic acid

[142]

Clostridium thermocellum
C.
saccharoperbutylacetonicum

C. thermocellum hydrolyses cellulose releasing the
C-source for butanol production by C.
saccharoperbutylacetonicum.

- Butanol production Rice straw - 6.5 g/L butanol from 40
g/L rice straw

[18]

E. coli
Acinetobacter baylyi

E. coli utilizes glucose as C-source producing
acetate. The acetate is used by A. baylyi

- E. coli biomass
accumulation

- Acetate removal

Glucose - Increase of E. coli bio-
mass from 2.1 g/l in
monoculture to 5.1 g/l
in co-culture

- Acetate reduction from
13 mM to 3mM

[143]

T. reesei
E. coli

T. reesei hydrolyses cellulose into monomeric
sugars. E. coli uses these sugars producing
isobutanol.

- Isobutanol
production

Cellulose - 1.88 g/L from 20g/L
cellulose

[21]

E. coli
E. coli

E. coli E609Y produces xylanase extracellularly,
hydrolysing xylan to xylooligosaccharides. they are
used by E. coli KO11 producing ethanol.

- Xylane hydrolysis
- Ethanol production

Xylan - 38.6% hydrolysis
- 3.71 g/L ethanol

[22]

Rhodotorula glutinis
Dwbaryomyces castellii

D. castelli hydrolyses corn syrup into sugars, which
are used by R. glutinis, producing carotenoids.

- Carotenoids
production

Corn syrup - 8.2 mg/L carotenoids [144]

Multidirectional Non-Distributed
E. coli

Corynebacterium
glutamicum

E. coli (Lys auxotroph) produces amylase
extracellularly, hydrolysing starch into glucose,
which is used by C. glutamicum, producing
cadaverine or L-pipecolic acid (L-PA) and Lys,
necessary for E. coli growth.

- Production of Lys
and cadaverine or
L-PA

Starch - 12.3 mM Lys
- 6.8 mM cadaverine or 3.4

mM L-PA

[23]

Sacharomyces cerevisiae -
Bacillus. Amyloliquefacien
or
S. cerevisiae - Lactobacillus
fermentum

B. amyloliquefaciens/L. fermentum produces
amylase, hydrolysing starch into glucose and
oligosaccharides. they are used by S. cerevisiae. Its
growth stimulates the production of more amylase
for B. amyloliquefaciens/L. fermentum.

- a-amylase
production

- Co-culture
conditions

Starch - 1.8-times increase a-
amylase production

- Bacterial;yeast ratio of
1:125; Tª of 33.5�C and
pH of 5.5

[145]

Streptomyces sp. Mg1B. subtilis In co-culture B. subtilis stimulates Streptomyces sp
Mg1 to produce chalcomycin A (macrolide
antibiotic). Chalcomycin A inhibits B subtilis
growth.

- Chalcomycin A Maltose - n.d. [24]

P. putida - Bdellovibrio
bacteriovorus

P. putida producing PHA and polyhydroxybutyrate
(PHB) was mixed with the predatory B.
bacteriovorus, that feeds on P. putida, releasing the
PHA or PHA to the medium.

- PHA and PHB octanoate - 80 % recovery in the
extracellular medium

[146]

Pseudomonas aeruginosa -
Buskholderia cenocepacia

In co-culture at limited iron P. aeruginosa and B.
cenoceparia competed for the iron, limiting the
growth of B. cenoceparia. When a P. aeruginosa iron
cheater mutant was introduced both strains grew
well at limited iron

- population fitness Casamino
acids

- Increase in the growth of
B. cenoceparia

[25]

P. aeruginosa
Enterobacter aerogenes

E. aerogenes use glucose, producing 2,3-butanediol
which is used by P. aeruginosa producing
phenazines, They are used for E. aerogenes as
electron acceptor.

- Electric density Glucose - 14-times increase of the
electric density

[147]

(continued on next page)
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Table 1 (continued)

Microorganism Interaction Goal to optimize C-source Yield Ref.

Unidirectional Distributed
E. coli

S. cerevisiae
Hydrogel compartmentalized E. coli and S.
cerevisiae were co-cultured, using glucose as C-
source, E. coli produces L-DOPA, that is used by S.
cerevisiae to produce betaxhantins

- Stability of the com-
partmentalized
consortium

- Inoculum ratio
- Betaxhanthins

production

Glucose - Up to 10 times reutiliza-
tion of the compartmen-
talized consortium

- Inoculum S. cerevisiae:
E. coli ratio of 6:1

- Optimized betaxhantin
production

[148]

Three E. coli strains The rosmarinic acid biosynthetic pathway was
divided in three E. coli strains, one producing caffeic
acid, other salvinic acid, and a third strains that use
those intermediaries to produce rosmarinic acid.
All of them use glucose as carbon source

- Rosmarinic acid Glucose - 172 mg/L rosmarinic acid [30]

E. coli
E.coli

The glutarate biosynthetic pathway from Lys was
splitted in two E. coli strains. The first one use Lys,
producing 5-aminovaleric acid, that is used by the
second E. coli strain producing glutarate

- Glutarate
production

Lysine - 43.8 g/L glutarate [149]

E. coli
E.coli

E. coli RES produces resveratrol from p-coumarate.
The resveratrol is glycosylated by E. coli RGL. Both
strains use glucose as carbon source.

- Resveratrol
glucosides

Glucose - 92 mg/L resveratrol
glucosides

[28]

Halomonas sp. HL-48
Marinobacter sp. HL-58

When both strains are growing using glucose as
carbon source they compete for it. When xylose is
used instead of glucose, Halomonas consumes
xylose, producing metabolites that are used for
Marinobacter growth.

- Growth Xylose - Changed from competi-
tive to cooperative inter-
action the growth was
improved in co-culture

[150]

E. coli
E. coli

E. coli P2C produces Tyr and p-coumarate from
glucose. Both are used for E. coli BLNA to produce
naringenin using glucose as carbon source

- Inoculation ratio
- Naringenin

production

Glucose - P2C:BLNA ratio 1:5
- 41.5 mg/L naringenin at

36 h

[27]

Four strains of E. coli The synthetic plants pathway to produce
Anthocyanins was divided and inserted in four
different E. coli strains. The first produces
phenylpropanoic acid, that is used for the second,
producing flavonones. A third strain produces
flavan-3-ols from flavonones. Finally, the last E. coli
strain produces anthocyanins from flavan-3-ols.

- Anthocyanins
production

Glucose - 9 mg/L anthocyanidin-3-
O-glucosides

[31]

E. coli
E. coli

The resveratrol biosynthetic pathway is divided in
two E. coli strains. Both strains use glycerol as
carbon source. One of them produces P-coumarate,
which is used for the other to produce resveratrol.

- Resveratrol
production

Glycerol - 22.6 mg/L resveratrol in
30 hours

[29]

E. coli
S. cerevisiae

E. coli utilizes xylose as C-source, producing acetate
which is the C-source for S. cerevisiae. In parallel,
E. coli is producing taxadiene, that is oxygenated by
S. cerevisiae.

- Co-culture stability
- Oxygenated taxanes

Xylose - 33 mg/L oxygenated
taxanes

[26]

E. coli
E. coli

One E. coli strain uses xylose as C-source, producing
3-dehydroshikimic acid (DHS), uses for the other
strain to produce muconic acid or 4-
hydroxybenzoic acid, using glucose as C-source.

- Muconic acid
- 4-hydroxybenzoic

acid

Glucose
Xylose

- 4.7 g/L of muconic acid
- 2.3 g/L of 4-hydroxyben-

zoic acid

[151]

Four strains of S. cerevisiae The enzymatic pathway to produce ethanol from
cellulose was divided in four S. cerevisiae strains.

- Ethanol production Cellulose - 1.25 g/L of ethanol [17]

Multidirectional Distributed
Dietzia sp strain DQ1245-1b

Pseudomonas stutzeri
SLG510A3-8

Dietzia uses hexadecane as C-source, producing
hexadecanoid acid, a-ketoglutaric acid and R-3-
hydroxybutanoic acid, that are used by P. stutzeri,
that in turn produces glutamate and acetate for
Dietzia. The consortium increase the diesel
degradation

- Diesel
biodegradation

Hexadecane - 85.54 % diesel removal [152]

E. coli
E. coli

One E. coli strain uses xylose, producing tyrosol. The
other consumes glucose and produces salidroside
(from tyrosol). The relationship between both
strains had been stablished by cross-feeding. The
xylose consuming strain is Phe auxotroph, while
the glucose consuming is Tyr auxotroph.

- Salidroside
production

- C-source ratio
- Inoculum ratio

Xylose
Glucose

- 6.03 g/L at 120 h
fermentation

- Glucose:xylose ratio 4:1
- Inoculum ratio tyrosol

producer:salidroside
producer 1:2

[32]

E. coli
E. coli

One E. coli strain uses glucose as C-source,
producing lysine. The other E. coli strain intakes the
lysine producing cadaverine. This strain use
glycerol as carbon source

- Cadaverine
production

- C-source ratio
- Inoculum ratio
- C:N ratio
- Fermentation

conditions

Glucose
Glycerol

- Up to 28.5 g/L with con-
stant feeding at 40 h

- Glucose:glycerol ratio
8:1

- Strains ratio 10:1
- C:N ratio 3:2
- others

[153]

E. coli
B. subtilis
S. oneidensis

E. coli utilizes glucose as C-source, producing
lactate and an electron donor; B. subtilis uses also
glucose producing riboflavin as an electron shuttle.
S. oneidensis uses the electron donor and the shuttle

- Electricity
production

Glucose - 15 days production with
an efficiency of 55.7%

[154]
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Table 1 (continued)

Microorganism Interaction Goal to optimize C-source Yield Ref.

generating electricity and oxidizing lactate to
acetate, which is used by E. coli and B. subtilis as C-
source

S. oneidensis
E. coli

E. coli ferments glucose producing formate, which is
used by S. oneidensis, producing flavins, uses by
E. coli. Their activity increase the electric current
from cathode to anode in a MFC

- Current density Glucose - Increase of the current
density to 2.0lA/cm2.

[155]

E. coli
E. coli

E. coli L is Leu auxotroph and E. coli K is Lys. They
co-culture provide each other with the necessary
amino acids, increasing the growth rate and the
biomass.

- Growth Glucose - 3-fold growth rate
increase

[156]
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xylose as carbon source and produced acetate, which in turn was
used by S. cerevisiae. Unidirectional distributed consortia have
been extensively used for phenylpropanoid production (see
Table 1). For example, naringenin was produced by a SMC where
an E. coli strain was engineered to produce p-coumarate while
another E. coli strain was in charge of synthetizing naringenin from
p-coumarate [27]. A similar strategy was used to produce resvera-
trol and resveratrol glucosides using E. coli-based synthetic consor-
tia [28,29]. The functional specialization in these kinds of consortia
can be addressed by more than two microbial strains. For example,
Li et al. [30] used three genetically modified strains of E. coli for the
production of rosmarinic acid and four different engineered E. coli
strains were used for synthetizing anthocyanins[31] (see Table 1
for details).

2.4. Multidirectional distributed

In this category, all members of the SMC have a role in main-
taining both the stability of the system and its functionality. Mul-
tidirectional Distributed SMC are significantly more complex and
require substantial metabolic engineering of the involved strains
to ensure stability and functionality. One example is a consortium
comprising two E. coli strains for the production of salidroside [32].
Both strains were engineered to establish cooperative metabolite
cross-feeding so that each strain complemented the other’s aux-
otrophy. One of the strains produced tyrosol, which was used by
the other to synthetize salidroside. To avoid competition over the
carbon source, both strains were also engineered so that the tyro-
sol producer used xylose and the salidroside producer used
glucose.

Overall it becomes apparent that increasing the complexity of
SMC in terms of stability and functionality and using complex
feedstocks delivers cost-effective production of increasingly com-
plex metabolites. However, upscaling SMC design from simple Uni-
directional Non-Distributed to Multidirectional Distributed is not
always straightforward, but is instead a trial and error process.
Thus, more holistic approaches to microbial community engineer-
ing are needed. In this sense, biotechnological applications using
monocultures benefit from simpler construction and application
of metabolic models.

Given the clear advantages that modelling contributes to the
development of more precise and complex SMC, in the following
sections we provide a comprehensive review of classical and recent
computational modelling methods developed to describe and engi-
neer natural and synthetic microbial consortia.

3. The long journey of community-based modelling: From
ecological to genome-scale models

Multiple community-level modelling approaches have been
developed to gain insights in the understanding of complex ecosys-
tems [33,34]. Overall, they have been classified as ecological,
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individual-based and metabolic models [35,36]. Ecological models
describe communities using ecological parameters such as pair-
wise interactions, growth rates, etc. and interactions depend
mainly on correlations. Individual-based models focus on the indi-
vidual rather than the population level. Finally, just as ecological
models predict interactions between components of a given sys-
tem, metabolic models predict interactions in a metabolic context
while providing a community dynamics description. The lack of
knowledge of kinetic parameters has promoted wide use of stoi-
chiometric, constraint-based rather than kinetic models [37].

3.1. Ecological models

Ecological models focus on representing and/or discovering
potential interactions among different species [38,39]. They
include mainly the evolutionary game theory and non-linear
dynamics where evolution is driven by stochastic processes [40].
Evolutionary game theory emerges as an adaptation of the classical
game theory to biological systems after stating that the assump-
tion that the success of one individual depends on the choices of
others does not apply in biology [41]. Thus, in evolutionary game
theory, natural selection and mutation are what drive change in
biological communities. This theory has been used to explain the
behaviour of microbial communities in terms of interactions such
as cooperation [42,43] or competition [44]. A new application of
game theory combined with metabolic models has been recently
suggested in community modelling to infer evolutionary stable
interactions by analysing the behaviour of a pair of microbes with
complementary autotrophies and cross-feeding relationships [45].

Lotka-Volterra (LV) are the first non-linear dynamic systems
describing biological populations with a mathematical model
based on ordinary or partial differential equations. LVs are deter-
ministic and do not consider the randomness present in nature.
From a static point of view, they are used to model similarity- or
regression- or rule-based networks [46]; while from a dynamic
point of view, generalized Lotka-Volterra (gLV) is the main
approach [47,48]. gLV requires knowledge of the growth rates
and the strength of the interactions between different components
of the community. gLV equations have been used to model a vari-
ety of different microbial communities including cheese fermenta-
tion communities [49], marine phage communities [50] and the
human microbiome [51–53]. In this last case, gLV was extended
to take into account external perturbations over time [51], and suc-
cessfully applied to predicting species abundances in the commu-
nity [52]. Finally, it was possible to qualitatively infer interaction
types without a dynamic model, quantitative assessment of inter-
action strengths and growth rates when gLV was considered [53].

3.2. Individual-based modelling.

In individual-based modelling (IBM), otherwise known as
agent-based modelling [54,55] microbes are individually simu-
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lated as concentration state variables rather than at population-
level. Each cell evolves over time following predefined probabilistic
rules that introduce the randomness required to model dynamics.
This approach includes genes, transcripts, proteins and metabo-
lites, although usually just a representative subset of them is
selected to reduce the complexity. Its main advantage is that they
take intra-population heterogeneity into account. For example,
IBM has been used to model biofilms with a microbial consortia
dynamics simulator set up on a high performance computing plat-
form [56]. A detailed review of IBM models is included in [57].
3.3. Genome-scale metabolic models (GEMs)

GEMs are structured representations of a target organism based
on existing genetic, biochemical and physiological information.
Therefore, GEMs represent the metabolic capabilities of a particu-
lar organism and can be used in combination with algorithms such
as Flux Balance Analysis (FBA) to predict phenotype from genotype
[58–60]. Before applying FBA, the metabolic network of a given
organism is converted into a numerical stoichiometric matrix (S),
where rows describe individual metabolites and columns describe
reactions. Cells’ subscripts < i,j > refer to their row (i) and column
(j). To predict growth (Z) and the vector v of unsolved individual
flux values for each metabolic reaction, a linear programming opti-
mization problem can be solved by maximizing a given objective
function Z = sT �v, subject to a set of constraints (Eq. (1)). FBA
assumes the steady-state with mass-balance constraint (S v = 0),
where metabolites’ change in concentration as a function of time
equals zero. Flux is constrained for each reaction by defining its
lower (lb) and upper (ub) bounds in mmol/g of dry weight * h)
units. Z is usually set to maximize biomass (g/L), although any
metabolic reaction could be selected as a target for flux optimiza-
tion. A good example is setting the bounds for a particular metabo-
lite of interest’s exchange reaction to maximize its production rate.

S � v ¼ 0
lbj � v j � ubj

ð1Þ

An important advantage of metabolic models is that they pro-
vide accuracy without requiring kinetic information [60]. There-
fore, it is not surprising that this modelling approach has started
to be used successfully irrespective of the level of complexity, i.e.
from individual organisms right up to microbial communities.
Therefore, GEMs are seen by many as optimal computational tools
for optimizing SMC-based biotechnological endeavours. The GEM
design procedure includes a posteriori experimental validation of
the model, including a performance assessment using different
carbon sources, gene essentiality and flux prediction in known
given conditions. Flux prediction could be validated with experi-
mental techniques that retrieve in-vivo fluxomics data, i.e. 13C
metabolic flux analysis (MFA), based on stable isotope tracing
studies [61]. For instance, 13C-MFA was extended to measure
metabolic fluxes at the microbial community level [62] and further
improved by avoiding cell separation. This allows quantification of
microbe-specific fluxes and metabolite cross-feeding rates and has
been applied successfully with E. coli biofilms [63].

Community models based on GEMs have been used at microbial
scale, but also to create multi-tissue models such as the human
liver and to predict the effect of kinetically-modelled drugs [64].
Interestingly, this approach has also been applied to the construc-
tion of whole-plant models including the leaves, the stem, the
seeds and the roots of barley [65]. The combination of several
genome-scale models in a community, however, entails several
challenges [66]. For instance, defining a community’s target func-
tion is a tricky point both in biological and mathematical terms.
On the other hand, setting exchange rates and metabolic fluxes
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to constrain the models in the context of a community is a new
topic. Current techniques measure the in vivo data for individual
organisms and are thus not applicable to the community. Instead,
the individual contribution of each organism must be measured.
An additional challenge is to define the composition of the medium
for combined culture taking into account the exchange of metabo-
lites within the SMC.

Due to the increasing interest and applicability of GEMs, we
focus here on the different approaches available so far to model
microbial communities using these metabolic models. Two differ-
ent stages can be distinguished in microbial community modelling
with GEMs: The first stage includes descriptive methods to under-
stand and describe communities. The second level of development,
which took off recently, focuses on building methods to describe
and engineer these microbial communities.

4. Dynamics-based classification of descriptive approaches to
metabolic modelling

Descriptive methods for metabolic modelling of microbial com-
munities are useful to describe how consortia work, to understand
them and to identify relationships within the community. How-
ever, they cannot be used to engineer consortia for reasons
explained below. Several attempts have been made to classify
and categorize different approaches to modelling microbial com-
munities. The first classification was based on available knowledge
about the community and its complexity [67,68]. An alternative
categorization was based on the scope of the community, as
defined by Bosi et al [69]. A most recent classification is based on
the definition of the target function (simplified linear, multi-level
or non-linear function) [70]. In order to complement current
approaches, we propose a classification based on microbial com-
munity dynamics (see Table 2). Thus, we classified available
descriptive methods as static/unified, static/multi-part and
dynamic.

4.1. Static/Unified methods

This approach considers all strains unified in a common meta-
bolic model, with only one copy of the shared reactions and
metabolites. The model is completed by adding strain-specific
metabolic content and a combined community-based biomass tar-
get function. This approach, also called ‘lumped network’ or ‘en-
zyme soup’, is the simplest and, although only useful to have a
general perspective of how the community works, it allows high
scalability (Table 3). In network-based models, the unified
approach would be the closest as it considers all reactions in a sin-
gle graph, irrespective of stoichiometry, which is ignored in favour
of topology. Network-based models consider the metabolic reac-
tions of each of the strains in the community to plot a graph where
metabolites are represented by nodes connected to each other fol-
lowing the direction of metabolic reactions, i.e. from substrates to
products. Reactions are in turn represented by edges. This
approach could be applied to poor-quality GEM reconstructions
because the main source of data is the reaction sequence. Some
tools or algorithms that follow this unified approach are:

� Borenstein’s group uses a graph or network-based community
model representation that does not consider stoichiometry.
With this unified static approach, they mainly study relation-
ships among different microbes [71].

� Kbase is a community data-driven network reconstruction [72].
It builds a single community model rather than aggregating
individual models and is focused on predicting interactions
between species in a community. In the absence of data for cer-



Table 2
Descriptive microbial community modelling methods classification. The ‘In-vivo consortia categories’ defines the most complex category from those defined in Fig. 1 that could be
modelled with the descriptive computational approach (both unidirectional and multidirectional could be modelled in all computational categories). There are additional
multiple ad-hoc algorithms or methods not listed in the ‘Tool’ column but collected in Table 3.

In-vivo consortia categories Properties Tool

Static/Unified Uni/Multidirectional
Non-Distributed

- Unique GEM
- Combined biomass objective function
- No metabolite exchanges
- High number of strains

MO-FBA/FVA, Kbase

Static/Multi-part Uni/Multidirectional
Distributed

- Individual GEMs
- Pool of metabolites
- Models connected by direct exchange reactions
- No metabolite accumulation in the medium

OptCom, cFBA, Mminte, SteadyCom,
Microbiome modeling toolbox, CarveMe, MICOM

Dynamic Uni/Multidirectional
Distributed

- Allowing community evolution over time
- Metabolite concentration in the medium
- Low number of strains

DMMM, d-OptCom, COMETS, MCM,
evoFBA, BacArena, Daphne, MMODES
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tain species due to lack of individual cultivability, this approach
uses relevant community-level data as input. Single and com-
munity modelling is carried out using the Kbase software plat-
form, including automatic gap-filling analysis by providing a
particular community-based growth condition (www.kbase.
us) [73].

� MO-FBA and MO-FVA, multi-objective FBA and FVA (Flux Vari-
ability Analysis) algorithm extensions to community level [74].
These methods model microbial consortia by grouping several
constraint-based individual models in a large, combined stoi-
chiometric matrix. The multi-objective feature allows weighted
combination of each strain’s individual objective.

4.2. Static/Multi-part methods

This category of models preserves the individual metabolic
matrices and introduces a pool of metabolites, which could be
defined by pre-fixed reactions (guild compartment in other classi-
fications) or by new stoichiometric reactions after an initial opti-
mization step (bi-level optimization). Single strain models are
directly connected by exchange reactions, assuming no change in
the concentrations of extracellular metabolites and no accumula-
tion in the medium. This approach has been profusely applied to
describe microbial communities (Table 3). Several algorithms that
fit this category are summarized below:

� The method described by Stolyar et al [75] provided the first
metabolic model of a microbial consortium and the distribution
of its associated metabolic fluxes. This method has since been
used in applications pursuing different objectives, such as cate-
gorizing interactions [76], estimating medium composition
[77], predicting relative biomass abundances [78] and defining
a host-pathogen interaction between the human alveolar
macrophage and M. tuberculosis in a multi-tissue model [79].

� OptCom [80] and d-OptCom [81]: are two closely related meth-
ods focusing mainly on engineering microbial communities (see
a longer description in section 5), although descriptive versions
are also available.

� cFBA [78]: this method assumes a balanced and fixed growth
rate for all microbes in the consortium. Subsequently, cFBA
(community FBA) maximizes this growth rate using a non-
linear multi-objective function. This approach implies constant
species abundance ratios in the community and is applicable to
cells grown in chemostat or in waste-water microbial commu-
nity scenarios [66].
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� MMinte [82]: this method supports the assessment of the pair-
wise microbial metabolic interactions that occur in a commu-
nity model limited to two strains. Metabolic models are
automatically reconstructed using ModelSEED and metage-
nomics data as input (16S rRNA sequences).

� SteadyCom [83]: this system maximizes community stability,
i.e. constant growth rate across all microbes in the community,
with an iterative linear programming approach. Additionally, it
applies FVA to predict microbial abundances under changing
uptake rates.

� CarveMe [84]: this focuses mainly on automatic reconstruction
of single strains. In addition, it allows to automatically merge
several single-species models into a single community model
with a common or individual extracellular compartments.

� Microbiome modelling toolbox [85]: a COBRA Toolbox exten-
sion to analyze microbial communities and study interactions
(intra- or with the host).

� MICOM [86]: this static approach predicts growth rates and
fluxes from in to vivo data such as species abundances in a
microbiome sample. Consequently, it infers metabolic interac-
tions among the microbiota.

4.3. Dynamic methods

Static approaches ignore temporal events. The dynamic or
hybrid approaches are based on dynamic Flux Balance Analysis
(dFBA) [87], which allows representations of the community’s tem-
poral evolution, including variations of metabolite concentrations
and cell densities over time. This is the preferred approach to sim-
ulate microbial interactions because shared metabolites vary
dynamically. It is however limited by the fact that dynamic
approaches entail kinetic parameter configuration and require
higher computational resources, running FBA multiple time points
per strain and thus limiting the analysis to smaller sized
communities.

� DMMM [88]: this was the first method that used dFBA at com-
munity level. DMMM optimizes growth rates for each strain.

� COMETS [89]: in addition to dynamic simulation of communi-
ties using dFBA, this algorithm considers the cells’ spatial distri-
bution. The biomasses and fluxes per time points reported as
output can be visualized using the VisANT tool [90].

� MCM [91]: this framework simulates dynamic community
models and adds statistical evaluation and parameter calibra-
tion based on experimental data. It was initially tested with a

http://www.kbase.us
http://www.kbase.us


Table 3
Applications descriptive microbial community modelling approaches. There are three blocks corresponding to the descriptive modelling approach category described in Table 2.
The ‘tool’ column includes the name of the algorithm or method defined in that application to describe the communities, and link to the software if it is available. ‘In vivo
validation’ column indicates if the application has been validated with in vivo data or they are in silico-based results.

Modelled Species Application In vivo
validation

Tool Ref.

Static/unified
Several anaerobic fermentative strains Description of product formation in fermentative conditions,

from glucose depending on pH and substrate concentration.
No ad hoc [157]

� 478 species
� 154 human microbiome species

Large-scale studies based on integration of metabolic
capabilities in a common network with multiple species, with
nodes representing metabolites and edges connecting
substrates to products. Phylogenetic analysis and prediction of
interactions based on that metabolic network.

No ad hoc [158,159]

Assorted 113 bacterial species Study of metabolic variability and cohabitation categorize
interactions versus growth rate.

No ad hoc [160]

Synechococcus spp, Chloroflexus spp, and sulfate reducing
bacteria

The first microbial consortia modelling classification,
representing the consortium with different approaches.
Description of relative abundances, biomass productivity and
generation of toxic by-products.

No ad hoc [67]

Clostridium cellulolyticum, Desulfovibrio vulgaris
Hildenborough, and Geobacter sulfurreducens

Study of trophic and electron accepting interactions of
subsurface anaerobic environments.

Yes ad hoc [161]

2 naphthalene-contaminated soil communities; with 13 and 12
species, including: Achromobacter, Azospirillum,
Comamonas, Achromobacter and Pseudoxanthomonas
[162].

Description of common metabolic network of naphthalene-
degrading bacterial communities based on metaproteomic and
taxonomic data.

Yes ad hoc [163]

261 assorted species of diverse habitats, such as soil, water and
the human gut.

Study the extent of resource competition and metabolic
exchanges in over 800 microbial communities.

No ad hoc [164]

Microbialites and microbial mats (structures similar to corals
and stromatolites)

Study of autotrophic capabilities (identification of pathways
for C and N assimilation) with a metabolic network based on
metagenomics data.

No ad hoc [165]

Thermosynechococcus elongatus BP-1 and Meiothermus ruber
Strain A

Study of photoautotrophic cyanobacterium-heterotroph
consortium.

No KBase [72]

The same as Taffs et al., 2009 [67] (see above) Description of ecosystem of hot spring microbial mats, with
different behaviour between day and night.

No MO-FBA/
FVA

[74]

Static/multi-part
D. vulgaris and Methanococcus maripaludis Study of mutualistic interactions between sulphate-reducing

bacteria and methanogens, predicting fluxes (intracellular and
exchange between species).

Yes ad hoc [75]

Clostridium butyricum and Methanosarcina mazei Studying a syntrophic interaction to increase methane
production in anaerobic conditions, with an efficient
consumption of by-products.

No ad hoc [166]

- Hepatocyte (liver), adipocyte (fat) and myocyte (skeletal
muscle) human cells
- leaf, stem and root of Arabidopsis thaliana cells

Defining multi-tissue models, to study diabetes in human
(including gene expression data) or analysing how Arabidopsis
minimizes energy usage for plant growth.

No ad hoc [79,167]

Plasmodium falciparum and the host red blood cell
(erythrocyte)

Study of the metabolism of malaria infection, over different life
cycle stages of the pathogen.

No ad hoc [168]

E. coli, Bacillus subtilis, Helicobacter pylori, Salmonella
typhimurium, Methanosarcina barkeri, S. oneidensis and
Methylobacterium extorquens

Estimation of medium composition to allow symbiosis
between binary pairs of species.

No ad hoc [77]

46 pairs of auxotroph E. coli Description of synthetic mutualism interactions in
auxotrophic E.coli.

Yes ad hoc [169]

The same as Stolyar,2007, Taffs et al., 2009 and Miller
et al.,2010 [67,75,161] (see above)

Quantifying a syntrophic association; assessing the level of
sub-optimal growth in phototrophic microbial mats
depending on community composition; and evaluating the
direction of inter-species metabolite and electron transfer.

No OptCom [80]

- Two imaginary species ‘i’ consuming glucose and ammonium
and producing succinate and species ‘j’ consuming succinate,
fixing nitrogen gas and excreting ammonium.
- E. coli polymorphism in Long Term Experimental Evolution
experiment [170].

Analysis community parameters (relative biomass
abundances, etc) at balanced growth.

No cFBA [78]

Geobacter metallireducens and G. sulfurreducens Study of interspecies electron transfer mechanisms in
syntrophic associations, in genomic and transcriptomics.

Yes ad hoc [171]

Bacteroides thetaiotamicron, Eubacterium rectale and
Methanobrevibacter smithii

Prediction of interactions between 3 key representative
bacteria in the human gut, and analysing their individual
contributions to secrete SCFA.

Yes ad hoc [100]

Bifidobacterium adolescentis L2-32 and Faecalibacterium
prausnitzii A2-165

Predicting demand for acetate and production of butyrate, in 2
gut strains related to Chron’s disease, using OptCom tool.

No ad hoc [172]

Ketogulonicigenium vulgare and Bacillus megaterium Understanding of vitamin C production by an artificial
consortium, study of subsystems and other possible
metabolites to secrete.

No ad hoc [173]

11 representative gut microbes (E. coli, H. pylori, Salmonella
enterica, S. thermophilus, etc.)

Study of interactions between gut microbes and human small
intestinal enterocytes, under anoxic and normoxic conditions.

No ad hoc [103]

Leptospirillum ferriphilum and Ferroplasma acidiphilum Study of bioleaching (oxidizing iron) in a bacteria-archaea
consortium presents in natural environment, with chemo-
mixotrophic growth.

No ad hoc [174]

AOB, ammonia oxidizing bacteria: Nitrosomonas europaea, Assessment of NO redox reactions contributes to N2O Yes ad hoc [175]
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Table 3 (continued)

Modelled Species Application In vivo
validation

Tool Ref.

Nitrosomonas eutropha, Nitrosospira multiformis, and
Nitrosococcus oceani. And NOB, nitrite oxidizing bacteria:
Candidatus Nitrospira defluvii, Nitrobacter winogradskyi,
Nitrobacter hamburgensis, Nitrospina gracilis.

formation during nitrification, in 9 different consortia with
variable composition selected among 4 AOB and 4 NOB.

- Human Microbiome Project data
- Desulfovibrio piger, B. thetaiotaomicron, Bacteroides
caccae, Bacteroides ovatus, E. rectale, Marvinbryantia
formatexigens, Collinsella aerofaciens, E. coli and Clostridium
symbiosium

Exploring pairwise microbial metabolic interactions, using 16S
data from microbiome studies. Evaluating a sulphate-reducing
bacteria growth in gut microbiome with different diets with
data from [176]..

No MMinte [82]

� 4 E. coli auxotrophic for amino acids- Gut microbiome Maximizing community stability (common growth). No SteadyCom [83]
� 74 human gut bacterial strains from AGORA collection

� 5587 species from NCBI RefSeq in groups of 20 strains per
community

Automatic reconstruction of single strain models (from 238 to
2472 reactions per model) with the possibility to merge in a
community one, analysing the number of compounds that can
be exchanged.

No CarveMe [84]

Human gut strains from AGORA collection [102] and human
cells (Brunk et al., 2018) [177]

Analysis of pairwise interactions (microbe-microbe and host-
microbe) of different types (competition, parasitism, etc.) with
a join matrix of GEMs, and modelling of microbial
communities given the relative abundances, used to
personalize community biomass reaction and simulating
under different diets.

No Microbiome
modelling
toolbox

[85]

Human gut strains from AGORA collection Predicting growth rates and metabolic fluxes from microbe
abundances as input. Using an heuristic optimization approach
based on L2 regularization to allow different growth rates per
strain.

No MICOM [86]

Dynamic
E. coli Exploring the metabolic variability among bacterial strains

and identifying interactions, across different single-carbon-
source conditions. They use a combination of a graph-theoretic
approach together with a metabolic model.

No ad hoc [178]

Clostridium acetobutylicum and Clostridium cellulolyticum Improving bioprocessing of cellulose with a clostridial
consortia, with DMMM.

No ad hoc [179]

G. sulfurreducens and Rhodoferax ferrireducens Designing of uranium bioremediation scenarios with two
competing heterogeneous species

No DMMM [88,180]

- E. coli auxotrophs
- G. sulfurreducens, R. ferrireducens, and S. oneidensis

Study of impact of lactate vs acetate addition on the
composition of uranium-reducing community. In-vivo
validation of E. coli auxotrophs with Wintermute and Silver,
2010 [181] results.

Yes d-OptCom [81]

E. coli, S. enterica and Methylobacterium extorquens Simulation of spatiotemporal dynamics of microbial
communities, predicting species ratios and investigating the
influence of spatial structure on competition in mutualistic
systems, and with a competitor between the cross-feeding
pair.

Yes COMETS [89]

Homogeneous E.coli consortia Combining metabolic model with statistical analysis and
calibration to experimental data, in this case related to Lenski’s
experiment LTEE.

Yes MCM [91]

- E. coli and S. enterica [87]
- B. fragilis, B. longum, C. difficile, E. coli, H. pylori and L.
acidophilus

Visualization of metabolic interaction networks between
microbes in a community.

No VisANT [90]

E. coli (E. coli B, not K12) Analysis of evolution. LTEE: divergence in glucose-limited
conditions, with daily transfers.

No evoFBA [182]

- Clostridium beijerinckii and M. barkeri
- Anaerostipes caccae, B. thetaiotaomicron, Bifidobacterium
longum, Blautia producta, Clostridium ramosum, E. coli and
Lactobacillus plantarum

Analysis of interactions and spatial and temporal distributions
of microbes in communities using individual-based metabolic
modelling.

No BacArena [94]

L. plantarum Study of cross-feeding with short-chain fatty acids from
glucose in the human gut microbiome, using DMMM with
spatial addition. The L. plantarum GEM is converted in a ‘supra-
model’ increased by pathways crucial in carbohydrate
fermentation in the colon.

No ad hoc [183]

N.s europaea and N. winogradskyi Study of the dynamics of nitrification-derived N oxide
production, with aerobic ammonia- and nitrite-oxidizing
bacteria, using DMMM.

Yes ad hoc [184]

E.coli Analysis of diauxic shift in two homogeneous subpopulations,
combining ordinary differential equations (ODE) with GEMs.

No Daphne [95]

- F. prausnitzii and B. adolescentis
- P. aurescens, H. stevensii, Halobacillus sp.

Simulation of heterogeneous microbial communities
behaviour over time with ODE and GEMs under perturbations,
i.e. changes in availability of metabolites and biomass of
different strains.

No MMODES [96]
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homogeneous E. coli community and subsequently with species
assemblages in nitrifying and methanogenic bioreactors
[92,93].

� BacArena [94]: this combines metabolic modelling with
individual-based modelling instead of using population-based
modelling (one model per strain with a certain amount of bio-
mass). Therefore, BacArena supports modelling of metabolically
heterogeneous populations where each individual cell is repre-
sented by a unique metabolic model depending on its spatial
resource allocation. In BacArena, metabolite diffusion (imple-
mented with partial differential equations) produces gradient
concentrations resulting in spatial niches where different meta-
bolic pathways are activated. It is also able to predict novel
cross-feeding interactions through fermentation products.
COMETS and BacArena allow spatial resolution taking diffusion
parameters into account.

� Daphne [95]: Daphne combines two different modelling strate-
gies: GEM (metabolism) and ODE (Ordinary Differential Equa-
tions). ODE supports modelling the strain’s growth kinetics
and the medium metabolite consumption and production
dynamically. It is underpinned by a set of equations that can
be solved mathematically.

� MMODES [96]: this also integrates GEMs and ODEs to simulate
biomass and metabolite dynamics over time. In addition, it is
possible to add perturbations using external longitudinal inter-
ventions such as changes in the medium and/or strain ratio (e.g.
increasing a metabolite concentration and/or biomass of a
species).

4.4. Practical applications of descriptive modelling methods

Overall, each of the three categories of descriptive methods
described above are suitable for modelling different microbial sce-
narios and their interactions. The unified approach is appropriate
for multiple strain systems and/or where knowledge is limited, e.
g unknown details of the individual assignment of reactions and
metabolites, such as in metagenomics. Quantifying metabolic
fluxes and representing inter-species interactions requires more
complex approaches, such as the multi-part or dynamic models.
However, the dynamic approach is the only suitable one to model
medium composition and predict metabolite concentration
because the multi-part feature transfers metabolites from one
model strain to another. Therefore, the dynamic approach is better
able to represent complex situations in microbial communities.
Dynamic approaches consider all time-dependent elements,
although they only can be applied to small communities because
they require describing individual strains in great detail and are
more time consuming than the other approaches. Nevertheless,
they are recommended for engineered or synthetic microbial com-
munities used in biotechnology applications, i.e. scenarios where
species richness is generally low. Computing requirements tend
to increase from Static/Unified to Static/Multi-part to Dynamic
approaches. This is particularly true for Dynamic approaches
because dFBA requires solving each GEM for every time slot in
the time-series. Final requirements will depend on the size of the
strain models (number of reactions and number of metabolites)
and any additional factors, such as the length of the time-series.

Static/Unified, Static/Multi-part and Dynamic approaches have
been used to model a large number of microbial communities
(see ‘modelled species’ column in Table 3) in a range of scenarios;
such as food biotechnology [97], human health (including GEMs for
microbes, tissues and organs) [98] and marine microbiome [99].
Table 3 collates applications to microbial consortia from a descrip-
tive point of view. Applications have been grouped according to the
categories defined in Table 2. The most extended approach is the
static/multi-part one, which has around twice the number of appli-
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cations of static/unified and dynamic approaches. In some cases,
the study defines a new computational method, while in others
the methods are re-used. Sometimes the corresponding in vivo
consortium has been deployed, although this is generally not the
case. Microbial consortia applications are sorted according to: i)
species richness (some are monoclonal populations, others are
consortia comprising less than 10 strains or hundreds of heteroge-
neous strains, such as those present in the gut microbiota), ii) spe-
cies diversity (ranging from only one cell per strain to large
consortia with hundreds of cells per organism) and iii) environ-
ment, industrial bio-transformations, human health and plants.

The application of these methods to human gut microbiome
modelling has received special attention [70]. Despite improve-
ments in sequencing having broadened our knowledge of the com-
ponents of the gut microbial community, the relationships among
them and between them and the human cells remain mostly
unknown. Hence, microbial community modelling techniques con-
tribute to improving our understanding of the complex behaviour
of the gut microbiome and its associations with human diseases. In
many cases, only a small (less than 10) and simplified subset of
representative species from the microbiome have been taken into
account [100,101]. However, in recent studies the size of the mod-
elled microbiomes has been expanded to tens or even hundreds of
species. Static/multi-part applications often focus on this scenario.
It is noteworthy that Thiele’s group has modelled the metabolism
of the entire human gut microbiota communities using
constraint-based models [102]. This approach to modelling has
been used to study the interactions between gut microbes and
human intestinal enterocytes under anoxic and normoxic condi-
tions [103], to predict levels of short chain fatty acids used to treat
Crohn’s disease [104] and to determine whether metformin treat-
ment increases agmatine production by gut microbiota, explaining
changes throughout the host’s lifespan [105]. More recently,
microbiome modelling has been used to develop human organ
models [106]. Finally, in multi-omics modelling, metabolome data
have begun to be combined with microbiome data [107–109]. In
general, integration of different omics data, such as metagenomics,
proteomics, metabolomics and fluxomics with GEMs offer wider
modeling scenarios [110–112].
5. Engineering metabolic modelling: Design and optimization

All of the descriptive approaches discussed in the previous sec-
tion are non-optimizing modelling methods. In the context indi-
vidual cell modelling, following the development of descriptive
methods, new tools to design and engineer high performance
strains were profusely developed [113], including strain designing
algorithms such as OptKnock [114], OptStrain [115], OptGene
[116] and GDLS [117]. Unfortunately, progress at community level
has not caught up, i.e. most of the current approaches support nei-
ther design nor optimization of natural and/or synthetic microbial
communities. However, pioneering efforts in this field pave the
way for future development of community-based design and opti-
mization methods. A set goal is to be able to optimize SMC based
on their final application. Key parameters/goals to be optimized
include, but are not limited to, production, pathway distribution,
community stability, medium composition, spatial cell organiza-
tion and a combination of goals, i.e. a flexible objective. Therefore,
beyond methodological classifications [59], the applications of
microbial community engineering can be also grouped according
to their optimization goal (see Fig. 2). In this context, there are a
few tools that can be considered generic, i.e. they could be used
to optimize several applications (see Table 4). However, multiple
applications have been developed as ad hoc systems to optimize
very particular tasks (Table 4). In the following sections we classify
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and describe in detail the first GEM-based attempts to design
microbial communities for biotechnological applications.
5.1. Production

The optimization goal in this group of applications is often max-
imizing production parameters in terms of either production rates,
yields or titers of a specific metabolite of industrial, health or envi-
ronmental interest. The outputs are parameters used to design the
community that fulfils this aim, e.g., strain ratio, C-source ratio,
metabolite uptakes, initial biomasses, cross-feeding rates, etc.

The main generic method in this group has been developed
using OptCom’s optimization capabilities [80]. OptCom imple-
mented two-level optimization for single strains and communities.
By default, OptCom optimizes the community biomass by assum-
ing fixed single strain growth, and returns strain ratio, substrate
uptakes and secretion rates. OptCom has been applied to different
microbial communities: a syntrophic association through hydro-
gen between D. vulgaris and M. maripaludis [80], a phototrophic
microbial community based on Synechococcus spp. in daylight
metabolism as the primary feeder [80], sub-surface anaerobic envi-
ronments with electron accepting interactions [80] and communi-
ties involved in uranium reduction [81].

Apart from OptCom, some ad-hocmethods have been developed
to optimize production: to maximize ethanol production with S.
cerevisiae and E. coli [118]; to maximize flavonoid production with
E.coli strains using a scaled-Gaussian model [119] and to maximize
yield with three E.coli mutants in a chemostat model of competi-
tion for a simple sugar (glucose limited conditions) [120].
5.2. Pathway distribution

Methods and applications in this category support consortia
engineering by fragmenting and distributing a given complex
metabolic pathway between the components of a consortium. This
allows division of labour through metabolite exchange, i.e. inter-
mediate metabolites are secreted by one strain and then used by
another. These are mainly graph-based methods [39] and thus
allow easy identification of i) species responsible for producing a
certain metabolite and ii) metabolite trafficking among strains.
For example, CoMiDA [121] identifies putative sub-pathways
responsible for synthetizing a target product from a series of given
substrates while minimizing the number of necessary species in
the community. Non-stoichiometry methods are the most usual
among graph-based methods even though they are not indepen-
dent and require post-processing steps (where stoichiometry is
taken into account) to verify whether designs are plausible. Some
approaches based on MILP (Mixed Integer Linear Programming)
rather than FBA, consider stoichiometry to allocate reactions
among the community’s single-strain metabolic models. This sup-
ports optimization of specific community goals (growth rate or
uptake of one compound) [122]. Other approaches have been
designed to expand the network with an agglomerative algorithm
that adds reactions iteratively instead of fragmenting the network
[123].

Generic methods have been also developed to optimize path-
way distribution, including: MultiPlus (static/unified), DOLMN
(static/multi-part) and BioLEGO 2 (static/multi-part). MultiPlus
[124] starts with a hypergraph that integrates several GEM models
and has two fixed objectives: minimizing the number of reactions
and minimizing exchanged metabolites in a de novo synthesis
pathway. Following a MILP optimization approach, DOLMN [125]
identifies communities able to survive under constraints (e.g. lim-
ited number of reactions) that are difficult to identify manually.
BioLEGO 2 [126] allows large-scale simulations of several simulta-
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neous knockouts (KO) and runs comprehensive searches to identify
the KOs maximizing ethanol yield.
5.3. Community stability

These applications predict optimal individual growth parame-
ters resulting in stable communities over time. Two generic meth-
ods have been developed to optimize this goal, d-OptCom [81] and
SteadyCom [83].

d-OptCom includes both descriptive (dynamic) and engineering
approaches that are similar to those of its static version, OptCom.
d-OptCom is a highly complex method, e.g. it requires a bilinear
FBA solver. Optimization is based on a global search feature
(BARON), kinetics parameters and additional LP constraints that
need to be defined in order to configure a MILP problem with
new reactions for new interactions between strains. In addition,
d-OptCom is defined as a ‘comprehensive computational frame-
work’ and does not provide any software that supports neither
reproducibility nor the development of new applications. It was
used to predict the optimal strain ratios in several auxotrophic
pairs of E. coli consortia [81]. SteadyCom focuses on predicting a
common growth rate for all members in a community and then
expecting it to be stable. Contrary to other multi-objective meth-
ods such as d-OptCom and the flexible methods, it entails a fixed
objective. SteadyCom requires linear FBA solver complexity and
iterative LP-based optimization. Apart from FBA, SteadyCom is
compatible with FVA. The method was applied to a multi-E. coli
community with amino acid auxotrophy as proof of concept and
a simplified human gut microbiome community that was reduced
to 9 species to analyse the influence of fibre content from diet [83].

On the other hand, the ad-hoc CASINO toolbox [101] is a compu-
tational platform focusing on the human gut microbiome. It is
designed to study metabolic interactions among microbial species
and the host metabolism. From a static point of view, CASINO pre-
dicted alterations of amino-acid metabolism due to dietary inter-
ventions. This method follows a two-level optimization approach,
similar to d-OptCom. It begins by maximizing growth rate at the
individual species level to determine uptakes and subsequently
optimizes growth rate and resource distribution at the community
level. Contrary to other previous methods, CASINO requires exper-
imental data (strain abundances, etc.) as input to configure models.
5.4. Medium composition

Applications in this category aim to predict the optimal concen-
tration of metabolites in a given medium that deliver maximal
community performance in terms of growth, production, decon-
tamination, etc. A study by Zampieri and Sauer [127] describes
an application to meet this optimization. It is based on a model
that returns ideal medium composition to minimize the cost of
metabolic cooperation in microbial ecosystems. The system maxi-
mized metabolite concentration of medium inputs to minimize the
cost of shared essential metabolites while guaranteeing that
growth was only possible within the consortium, not as individual
strains. This is a comprehensive optimization approach that solves
a two-level MILP problem with high computational complexity. A
descriptive static/multi-part approach has also been used to opti-
mize medium composition [77]. This used a pair of metabolic mod-
els to initially define a minimum medium containing all the
metabolites required to sustain growth. Subsequently, they
authors iteratively removed carbon sources to hamper growth
and added new metabolites to recover growth. It was concluded
that medium composition makes symbiotic relationships possible
between binary pairs of 7 different strains.



Fig. 2. Microbial community optimization/design goal categories. Section 5 describes each category in detail. Table 4 shows detailed applications and methods of these
different categories. A. Optimize production of a metabolite of interest (red circle) depending on community parameters. B. Optimize distribution of the reactions within a
metabolic pathway among different strains. C. Optimize individual strain growth to reach a stable community over time. D. Optimize concentration of nutrients (circles)
available in the microbial community medium. E. Optimize physical distribution of the strains in the community. The flexible optimization category covers all the
optimization goals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.5. Spatial organization

Methods developed to meet this objective predict the physical
distribution of the community’s strains along a 2D/3D space. The
only generic method in this group is IndiMeSH [128], which
dynamically modelled bacterial dispersion and nutrient diffusion
in a 2D pore network based on pore size and nutrient gradients.
Modelling space implies simplifying other issues, such as using a
simplified versions of GEMs (reducing numbers of reactions and
metabolites from thousands to hundreds) or integrating all bacte-
rial biomass per spatial unit in a single reaction regardless of intra-
species variation. IndiMeSH was applied to soil habitats using two
different consortia: a syntrophic community of E. coli with S. enter-
ica, and a multi-strain community comprising the obligate aerobic
P. putida and the facultative anaerobic P. stutzeri. BacArena and
MMODES, listed above in the descriptive methods, include some
spatial features, although optimizing spatial organization is not
their principal goal. In an ad hoc application, a combination of
GEMs and partial differential equations to describe metabolite dif-
fusion resulted in a dynamic model that was able to predict biofilm
thickness [129].

Spatially Linked Microbial Consortia (SLMC) is a conceptual
design to engineer consortia. Spatial distribution is optimized
using isolated modules and bespoke growth media to improve con-
trol and facilitate new strain combinations. SLMC is reviewed by
Sala [130] by including GEMs in the process of designing compat-
ible synthetic communities.
5.6. Flexible optimization

This section describes the usage of methods for goal-agnostic
optimization, i.e. the optimization goal and the consortium-para
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meters-to-be-predicted can be independently defined and remain
different in each case. They support design and engineering of
microbial communities by selecting the consortium configuration
that best optimizes a given goal. To the best of our knowledge, FLY-
COP [59] is the only system with the ability to do this. The goal can
be defined flexibly depending on the consortium’s functionality
and a particular interest, e.g. community growth rate, stability,
medium composition, etc. For example, FLYCOP can be configured
to optimize medium composition by selecting metabolites and
their initial concentrations from a finite list. FLYCOP’s flexible
approach could contribute to improving metabolic modelling of
microbial communities in ways that go beyond multiple optimiza-
tion goals not limited to maximizing growth rate. One example of
this are applications where we would seek to maximize yields of
certain a product of interest when its synthesis pathway has been
split between different strains. Another example would be the
comparison optimization approaches for different products as is
done experimentally in [26] with different fitness functions.
Another advantage of FLYCOP’s flexible approach is that multiple
parameters can be optimized at once rather than having to imple-
ment independent optimization processes for each parameter
[118]. Besides, FLYCOP lends itself to applications with obligatory
mutualistic communities where other engineering approaches do
not, e.g. d-OptCom [81]. While production optimization methods
are able to maximize yield at the individual cell level, FLYCOP opti-
mizes reaction fluxes within the metabolic model. FLYCOP can
manage applications involving GEMs with thousands of reactions
where other methods are limited to small models. FLYCOP’s flexi-
bility can also applied to single-strain models where each individ-
ual strain has a different growth rate, thus not requiring a single
growth rate for all strains in the model as other applications do
[78,131]. Additionally, FLYCOP supports automatic search opti-



Table 4
Engineering modelling applications. Grouped by the optimization community goal. Focus on optimization/engineering topics. ‘Production’ group includes to optimize different
community parameters (strains ratio, carbon source ratio, initial biomass, etc). GR = Growth Rate. Output means the configuration parameters that are predicted. If there is a
software available, it is referred to and linked in the column ‘references’ too.

Specific goal of optimization Output Strains Results and additional details Ref.

Production
Maximizing ethanol

production
- carbon source

ratio (glucose/
xylose)

- mutant initial
biomasses

- S. cerevisiae (or S. stipitis)
- E. coli

- ethanol productivity of ~ 1.08 gr/L/h
- In vivo experiments to determine kinetics

parameters

[118,185,186]

Maximizing flavonoids
production

- carbon sources
ratio (glucose/
glycerol)

- strains ratio

E. coli strains (flavonoid pathway
fragmented in 2 strains)

- Using a scaled-Gaussian model: carbon source ratio
of 0:1 (glucose:glycerol), strains ratio of 7:3
(upstream:downstream)

- Production of flavonoids to 40.7 ± 0.1 mg/L, i.e. a
970-fold improvement

- Also in vivo experiments to validate the results

[119]

2 maximization goals:
- methane production

(high community GR)
- methane yield (low com-

munity GR)

- initial bio-
masses (strains
ratio)

- flux rates (input
and output
metabolites)

- D. vulgaris
- M. maripaludis
- M. barkeri

- Predicted (max. methane, ATP and biomass yield)
and some in vivo data (biomass yield and ATP
maintenance)

- Low biomass yield per strain, vs community goal
- 2 first strains consortium: 0.45 mol. methane/mol.

ethanol
- In vivo validation with literature data from [187]

[131]

Maximizing yield - initial glucose
concentration
for stable
consortia

- strains ratio
- uptake glucose

and glycerol

- E. coli: -glucose specialist
CV103-‘respirer’

- acetate specialist CV101-
‘fermenter’

- glycerol specialist CV116

- In vivo data from [170]. Originally growing in
tryptone

- 3 mutants after evolution in-vivo, with different GRs
- Glucose limited conditions (LTEE)
- Chemostat model of competition for a simple sugar
- In silico model predictions for different glucose

concentrations
- >0.0033% of acetate specialist to allow a viable

consortium
- Strain rations: CV101:CV103:CV116 ~=

0.10:0.65:0.025
- CV103 best takes up the limiting resource glucose,

but excretes acetate and glycerol (and/or a closely-
related compound, glycerol 3-phosphate)

[120,188]

Maximizing (together):
- community biomass
- yield per single strain

(OptCom fixed goal)

- strains ratio
- substrate

uptakes

- D. vulgaris
- M. maripaludis

- In vivo data from [75]
- In silico model with OptCom
- Strain ratio: 2:1 in vivo and 2.28:1 in silico lactate

uptake = 48 mM/h
- formate and hydrogen accumulation = 0
- Additional in silico predictions: concentration of

acetate, methane, CO2 and total biomass

OptCom [80]

Maximizing (together):
- community biomass
- yield per single strain

(OptCom fixed goal)

- strains ratio
- O2/CO2 ratio

- Synechococcus spp (SYN)
- filamentous anoxygenic pho-

totrophs (FAP) related to
Chloroflexus and Roseiflexus
spp

- sulphate-reducing bacteria
(SRB)

- In vivo data from [67].
- In silico model with OptCom
- Fluxes ratio O2/CO2 reactions: 0.03–0.07
- Strain ratio: 1:6:1 experimentally, and from 1:5:1 to

3:5:1 with metagenomics data
- SYN/FAP strain ratio: 1.5–3.5 in vivo and from 7.94

(with O2/CO2 = 0.07) to 20.26 (0.03) in silico

OptCom [80]

Maximizing (together):
- community biomass
- yield per single strain

(OptCom fixed goal)

- strains ratio
- substrate

uptakes

- C. cellulolyticum
- D. vulgaris
- G. sulfurreducens

- In vivo data from [161].
- In silico model with OptCom
- Biomasses: 0.8:0.1:0.13 in vivo and

0.036:0.0045:0.0059 in silico
- acetate: 2.7 in vivo and 2.48 in silico

- CO2: 3.3 in vivo and 3.2 in silico
- Several metabolite fluxes details in Fig.5

OptCom [80]

Maximizing uranium
reduction

- strains ratio
- acetate and Fe

(III) uptakes

- S. oneidensis (acetate
producer)

- G. sulfurreducens
- R. ferrireducens

Two first ones are uranium
reducers

- In vivo data from [180].
- In silico model with OptCom
- Carbon source: lactate = 5 mM
- In ammonium excess condition ([NH4] = 400 lM)
- Decrease in the biomass of the uranium-reducing

species (SO, GS):
- Strain ratio max.community biomass:

0.056:0.051:0.055
- Strain ratio max.uranium reduction:

0.039:0.041:0.056
- Acetate (GS/RF): 14.9/1.49 when max.uranium

reduction
- Fe(III) (SO/GS/RF): 28.3/110/2.06 when max.ura-

nium reduction
- Alternative optimization objective in the manuscript

OptCom [81]

(continued on next page)
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Table 4 (continued)

Specific goal of optimization Output Strains Results and additional details Ref.

2 cases of study:
- maximizing butyrate

production
- maximizing atrazine

degradation

Interventions in
medium
composition or
biomass of strains

- F. prausnitzii and B. adolescen-
tis
P. aurescens, H. stevensii,
Halobacillus sp.

- In silicomodel combining GEMs with a Markov Deci-
sion Process

- Predict how to modify the community over time to
reach a state of maximum performance

- Intervention for max. butyrate: inulin increase
- Intervention for max. atrazine degradation: depend-

ing on the microbiome state, increase of the biomass
of H.stevensii is often

MDPbiomeGEM
[96]

Pathway distribution
Optimizing metabolite

secretion
Secondary goal: medium
composition

- medium
composition

- 2 selected
strains

� secreted
metabolite

122 strains (6 from [77]) and 116
from [76] combined in > 6500
different consortia of 2 members

- In silico framework to design synthetic communities,
evaluating which new metabolites could be secreted

- secreted emergent metabolites (highlighting the
most common ones), with their associated two-
strain consortium and medium composition

- E. coli/B. subtilis emergent secretion of both succi-
nate and urea (see Figure S4 and F6 from the original
study for more pairs and metabolites)

[189]

Maximizing growth or
compound yield

Allocated reactions
per strain

2 generic bacteria with reduced
central carbon metabolism

- In silico model following a MILP optimization
approach (higher computational cost than LP
(FBA)), with a Static/Multi-part method

- Given metabolic reactions to distribute
- Strains can only survive through cross-feeding

[122]

Minimizing number of
species

Selected species to
combine in the
community

Human gut microbiome - In silico model with CoMiDA
- Graph-based approach (not GEM) combined with

Integer Linear Programming (ILP)
- Given selected substrates and products, and a set of

available species
- Identify putative metabolic pathways from sub-

strates to product
- Glycolysis pathway, glucose ? pyruvate, 284 spe-

cies: minimal solution with one species was found.
Also, they forced for multi-species solution

- With 10,000 random pairs of substrate-product
metabolites, 1–3 species are selected among 2051
species

CoMiDA [121]

2 cases of study:
- maximizing antibiotics

production,
- maximizing 1,3-

propanediol and
methane yield

- Secondary goal:
production

All reactions to
include and their
distribution among
strains

- Streptomyces cattleya and M.
barkeri (selected from 4 strains)
- K. pneumoniae and M. mazei

- In silico model with MultiPlus, following static/Uni-
fied approach

- De novo synthesis of bioactive metabolites
- Results:
- Case study 1 (antibiotics): 4 solutions with 528 reac-

tions (2 transports, 3 insertions, and 28 endogenous
reactions)

- Case study 2 (industrial): 6 solutions with 110 reac-
tions (1 transition and 10 endogenous reactions)

MultiPlus [124]

Optimizing metabolic
exchange rates

- carbon/nitrogen
exchange and
uptake rates

- kinetic
parameters

- C. acetobutylicum
- Wolinella succinogenes

- In silico model with DMMM, following a dynamic
approach

- Model parameters adjusted to in vivo data (kinetic
ones, biomass, carbon and nitrogen sources ratio)

- Anaerobic species with hydrogen and nitrogen
cross-feeding

- Co-cultures with uni- and multidirectional meta-
bolic interactions

- The metabolic models can simulate their experi-
mental data, in 4 different cultivation conditions
(with/out NH4 and/or NO3), with distinct metabolic
capabilities

[190]

Surviving under constraints Cross-feeding
partnerships and
division of labor

E. coli (2–3 strains) - In silico model with DOLMN, following a MILP opti-
mization approach, with a Static/Multi-part method

- Results:
- core: 91 combinations of 2 strains. Split the TCA

cycle into two halves
- full with reduced functionalities: 2207 combina-

tions for 2 strains, and 2402 for 3 strains. At least
215 and 203 internal reactions to grow, respectively
for 2 and 3 strain consortia. Loss one reaction is not
compensated with adding one metabolite in the
medium (nonlinear boundary)

DOLMN [125]

Maximizing ethanol yield KO in strains S. cerevisiae
E. coli

- In silico model with BioLEGO 2. Based on Microsoft
Azure Cloud.

- Analysis of two-step fermentation pathway of Ulva
sp. biomass into ethanol with KOs in each strain
from the consortium

- 6,649,115 possible single KO analysed scenarios
- Ethanol yield increased at 170% of WT (for 867 KO

candidate pairs)

BioLEGO 2 [126]
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Table 4 (continued)

Specific goal of optimization Output Strains Results and additional details Ref.

Stability
Maximizing (together):
- biomass per single strain
- community biomass

concentration (cells/L)

strains ratio Auxotrophic E. coli pairs: (argH-
lysA)
(lysA, trpC)
(metA, ilvE)

- In vivo data from [169].
- In silico model with dOptCom
- Biomass ratios (approx. values from Fig. 2):argH-

lysA: 0.8:0.2 in vivo and 0.97:0.03 in silicolysA-trpC:
0.9:0.1 in vivo and 0.98:0.02 in silicometA-ilvE:
0.15:0.85 in vivo and 0.15:0.85 in silico

dOptCom [81]

GR in auxotroph evolution strains ratio E. coli lysine and leucine KOs
long-term

- In vivo data to constrains the model
- Glucose minimal medium, with uptake rate

10 mmol/gDW/hour
- Increased GR by 3 folds, while decreased growth in

mono-culture
- Strain ratio depending on the aa uptake rate

[156]

Common growth
Secondary goal:
spatial distribution

- strains ratio
- cross-feeding

rate
- spatial

distribution

- E. coli (KO metE) in lactate
- S. enterica (secretes
methionine)

- In vivo data from [191] and itself
- In silico model with COMETS

Strain ratios: E. coli:S. enterica = 75–80:25–20%
- Spatial distribution: presence of a strain competitor

between cross-feeding species reduces the growth
of those strains

COMETS [89]

GR with optimum
distribution of resources

- metabolites
(amino-acids)
consumption

E. rectale or F. prausnitzii, B.
thetaiotaomicron, B. adolescentis
and R. bromii

- In vivo data to constrains the model
- In silico model with CASINO
- Quantifying diet-induced metabolic changes of the

human gut microbiome, using metabolomics data

CASINO [101]

Common growth - strains ratio
- community GR

- 4 E. coli auxotrophic for
amino acids

- Gut microbiome (9 species)

- In silico model with SteadyCom
- 4 E. coli case of study:
- GR: 0.736 gDWh�1

- Strains ratio: Ec1-Ec2 = 50%, Ec3-Ec4 = 50%. Direct
competition Ec1-Ec4 and Ec2-Ec3

- Gut microbiome case of study: values depending on
fibre uptake from B. thetaiotaomicron:

- GR: ~0.06–0.08 gDWh�1, variable depending on
fibre uptake

SteadyCom [83]

Medium composition
Minimizing the cost of

metabolic cooperation
Combination of
nutrients allowing
synergistic growth

E. coli arginine and leucine KOs - In silico model following a static/Multi-part
approach

- Selected nutrients: supplementation of nucleotide
precursors (maltose, xanthine and inosine) to the
medium

- In vivo experimental validation: the predicted med-
ium allows growth

[127]

Spatial organization
Spatial Partitioning - -spatial

distribution
- biofilm

thickness
- growth with by-

products

P. aeruginosa
S. aureus (chronic wound biofilm)

- In silico dynamic model combining GEM with partial
differential equations

- Results:
- Tendency of the two bacteria to spatially partition,

as observed experimentally. Nutrient gradients
influence (oxygen-top-aerobic, glucose-bottom-
anaerobic)

- Different biofilm thickness than isolated

[129]

Spatial Partitioning - -spatial
distribution

- strain ratio
- shift due to

perturbations

2 case of study (reduced models):
- E. coli, S. enterica
- P. putida, P. stutzeri

- In silico model with IndiMeSH, following a dynamic
approach

- Study of soil habitat
- Compared to COMETS and experimental data

IndiMeSH [128]

Flexible
Optimizing PHA

accumulated
Secondary goal:
production

- initial
biomasses

- NH4

concentration
- sucrose secre-

tion rate

- S. elongatus
- P. putida

- In silico model with FLYCOP
- biomasses: 2, 0.2 gr/L
- NH4: 0.5 mM
- sucrose secretion rate: 40%
- PHA production: 22.43 mM/100 h

FLYCOP [59]

Stability maximization
(common growth)

- strains ratio
- amino acid

secretion rate

4 E. coli auxotrophic for amino
acids

- In silico model with FLYCOP
- strains ratio: Ec1 = 35%, Ec2 = 10%, Ec3 = 15%,

Ec4 = 40%
- aa secretion rate (in terms of %GR): Arg = 1.5, Lys = 2,

Met = 1.6, Phe = 1

FLYCOP [59]

Several optimization goals:
maximizing yield or
biomass or GR, and
minimizing time

Uptake rates per
strain (glucose,
acetate, oxygen)

2 E. coli polymorphism:
- glucose specialist
- acetate specialist

- In silico model with FLYCOP
- In vivo data from Lenski’s experiment (LTEE)
- Different configurations are predicted depending on

the optimization goal. A polymorphism with 2
strains growing is the best configuration under lim-
ited oxygen conditions; else only one strain growing

FLYCOP [59]
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mization versus the systematic assessment of different configura-
tions. Regarding technical features, FLYCOP has linear FBA solver
complexity and optimizes using a local search approach (SMAC).

Among the different categories of applications designed to engi-
neer microbial communities using GEMs (see Fig. 2), the most
widespread optimization goal is production followed by pathway
distribution. Fewer examples focus on the optimization of other
parameters, e.g., stability, medium composition, spatial organiza-
tion and even a flexible goal. The most common consortia are
two-strain (see ‘strains’ column in Table 4), although there are
some with a higher number of strains, both homogeneous and
heterogeneous.
6. Summary and outlook

As we realize that microbes are rarely found alone but in the
context of complex communities, the need for computational tools
able to provide mechanistic knowledge of how these communities
work and evolve over time becomes critically important. Microbial
communities are already recognized as key players in human
health and they have begun to be seen as promising biocatalysts
in biotechnology applications. Following the development of
individual-cell modelling approaches and pioneering efforts on
community-level modelling, it is largely expected that methods
for the efficient analysis and engineering of such communities will
spring up in the coming years. Combining GEMs with Machine
Learning or Artificial Intelligence techniques have been suggested
as promising developments for metabolic modeling [132,133]
and its application to metabolic engineering [134].

In this context, the debate over the real objective function at
community level is a long running one [135]. The general assump-
tion is that the microbial community’s goal is to maximize growth
under a natural selection scenario. However, optimizing biomass
might not be the right microbial goal with genetically engineered
organisms or when the environment is different from that where
its evolution can occur [91]. Thus, alternative community configu-
rations implying alternative goals are ignored by most of the avail-
able methods. It would therefore be interesting to have methods
that support optimization of different community goals.

Current dynamic methods rely on the analysis of a few species
and only static/unified methods can be used to analyse complex
communities, thus hampering a deeper understanding of such
communities. An important challenge to address in the near future
is the development of tools to support dynamic analyses of large
microbial communities in the context of high-quality GEMs [70].
This will require not just a larger GEM portfolio but also collecting
large sets of kinetic parameters and developing novel computa-
tional methods to reduce the very time-consuming dFBA-based
solving stage.

Beyond increasing the complexity of microbial community
engineering using GEMs, it is important to note that the compo-
nents of a given community often operate under different sets of
conditions. Differences involving nutrient preference can be easily
taken into account, so model-based analysis becomes very useful
when defining a common medium that supports growth for all
the strains in the consortium. However, GEMs cannot be used
directly to model many other environmental conditions such as
pH and temperature. Approaches based on the inclusion of omics
data to constrain the models have shown to be an interesting alter-
native. In any case, applications of computational modelling to
synthetic has only been tested with a set of microbes living in
physiologically compatible environmental conditions.

Another important challenge in microbial community modeling
is validation, i.e. proving model usability beyond the computa-
tional context. Experimental validation requires a very controlled
242
environment to reduce microbial communities’ high complexity
[136]. Validating community dynamics approaches is even more
complex. Thus, experimental validation is currently viable when
working with small size communities, i.e. two or three compo-
nents, or synthetic communities. Validation becomes much more
difficult when working with larger or natural communities (soil
& gut microbiomes, etc.). In vitro simulators could be a suitable
alternative [137,138].

In the long term, model-guided microbial community engineer-
ing should trend towards the development of technologies capable
of predicting potential genetic modifications at the community-
level (similar to what the individual-level OptKnock or GDLS algo-
rithms are capable of). The same applies to all the useful and com-
prehensive COBRA-related algorithms currently used to engineer
individual strains.
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