CRISPR/Cas9-enhanced Targetron Insertion for Delivery of Heterologous Sequences into the Genome of Gram-Negative Bacteria

Check out the new MIX-UP publication "RISPR/Cas9-enhanced Targetron Insertion for Delivery of Heterologous Sequences into the Genome of Gram-Negative Bacteria" published in the journal Current Protocols. Congratulations to Elena Velázquez, Yamal Al-Ramahi and Víctor de Lorenzo to the success!

Targetron technology, a gene-editing approach based on the use of mobile group II introns, is particularly useful for bacterial strains deficient in homologous recombination. Specifically, the Ll.LtrB intron from Lactococcus lactis can be used in a wide range of species and can be easily retargeted, that is, modified for integration into any locus of interest. Targetron technology is thus a powerful tool for generating genomic insertions in a broad range of genetic backgrounds, mainly when no other techniques can be efficiently employed. Notably, the approach can be coupled to CRISPR/Cas9 counterselection of wildtype DNA sequences to decrease the population of unmodified cells and ultimately improve Ll.LtrB insertion efficiency. Here, we describe a step-by-step protocol for delivering exogenous sequences into the genome of Gram-negative bacteria by means of targetron technology and CRISPR/Cas9 counterselection using Pseudomonas putida as a model. We describe the retargeting of the Ll.LtrB intron to the locus selected for insertion, the design of specific spacers for eliminating unmutated cells through CRISPR/Cas9 counterselection, and the cloning of exogenous sequences into Ll.LtrB. We also provide a protocol for delivering a specific cargo to the locus of choice once all necessary components of the system are ready. Lastly, we describe a general protocol for curing the engineered strain of all plasmids. CRISPR/Cas9-enhanced Ll.LtrB insertion can be an efficient alternative for overcoming low recombination-based editing efficiency and can be used in numerous bacterial species. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

Click here to read the full article.